
Chapter 4

Hamming Codes

In the late 1940’s Claude Shannon was developing information theory and cod-
ing as a mathematical model for communication. At the same time, Richard
Hamming, a colleague of Shannon’s at Bell Laboratories, found a need for error
correction in his work on computers. Parity checking was already being used
to detect errors in the calculations of the relay-based computers of the day,
and Hamming realized that a more sophisticated pattern of parity checking al-
lowed the correction of single errors along with the detection of double errors.
The codes that Hamming devised, the single-error-correcting binary Hamming
codes and their single-error-correcting, double-error-detecting extended versions
marked the beginning of coding theory. These codes remain important to this
day, for theoretical and practical reasons as well as historical.

4.1 Basics

Denote by L3 the check matrix that we have been using to describe the [7, 4]
Hamming code:

L3 =

 0 0 0 1 1 1 1
0 1 1 0 0 1 1
1 0 1 0 1 0 1


It has among its columns each nonzero triple from F32 exactly once. From
this and Lemma 3.1.12, we were able to prove that the [7, 4] Hamming code
has minimum distance 3. This suggests a general method for building binary
Hamming codes. For any r, construct a binary r × 2r − 1 matrix H such
that each nonzero binary r-tuple occurs exactly once as a column of H. Any
code with such a check matrix H is a binary Hamming code of redundancy binary Hamming code

r, denoted Hamr(2). Thus the [7, 4] code is a Hamming code Ham3(2). Each
binary Hamming code has minimum weight and distance 3, since as before there
are no columns 0 and no pair of identical columns. That is, no pair of columns
is linearly dependent, while any two columns sum to a third column, giving a
triple of linearly dependent columns. Lemma 3.1.12 again applies.

49

50 CHAPTER 4. HAMMING CODES

As defined, any code that is equivalent to a binary Hamming code is itself
a Hamming code, since any permutation of coordinate positions corresponds
to a permutation of the columns of the associated check matrix. The new
check matrix is still a census of the nonzero r-tuples. Different codes and check
matrices may be selected to suit different purposes.

Examples. The following are check matrices for two [15, 11] binary
Hamming codes Ham4(2):

0 0 0 0 1 1 1 1 1 1 1 1 0 0 0
0 1 1 1 0 0 0 1 1 1 1 0 1 0 0
1 0 1 1 0 1 1 0 0 1 1 0 0 1 0
1 1 0 1 1 0 1 0 1 0 1 0 0 0 1



0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 0 1 0 1 0 1 0 1 0 1 0 1 0 1


The first is the check matrix for a code which has a generator matrix in
standard form (see page 35 and Problem 4.1.9 below). The second matrix
checks a code which has no generator in standard form, since, for instance,
(000000000001111) is a codeword.

The second of the two example check matrices, which we will denote L4,
is the counterpart of the matrix L3 above, in that its column i contains the
binary representation of i. For each positive integer r, let Lr be the r × 2r − 1
matrix whose ith column is the binary representation of the integer i (with least
significant digit at the bottom). Then Lr is the check matrix for a Hamming
code Hamr(2). We call Lr a lexicographic check matrix.lexicographic check matrix

Examples. We have given L3 and L4 above. We also have the smaller
cases

L1 = [1] and L2 =

]
0 1 1
1 0 1

�
which are check matrices for, respectively, the degenerate Hamming code
Ham1(2) = {0} and Ham2(2), the repetition code of length 3.

For a binary Hamming code with lexicographic check matrix Lr, we have
an easy version of syndrome decoding available, similar to that for Ham3(2)
discussed earlier and presented by Shannon under Example 1.3.3. If the vector
x has been received, then to decode we first calculate the syndrome s = Lrx

d.
If s is 0, then x is a codeword and no further decoding is required. If s is not 0,
then it is the binary representation of some integer, j say, between 1 and 2r−1.
We decode by assuming that a single error has occurred in position j of x.
If we add an overall parity check bit to a binary Hamming code Hamr(2),

then the minimum distance is increased to 4. We then have an extended Ham-
ming code, denoted EHamr(2). By Problem 2.2.3 this is a 1-error-correcting,extended Hamming code

2-error-detecting binary linear [2r, 2r − r] code, as originally constructed by
Hamming.
Begin with the Hamming code Hamr(2) given by the lexicographic check

matrix Lr and extend by adding an overall parity check bit at the front of each

4.1. BASICS 51

codeword. A check matrix ELr for this extended Hamming code EHamr(2)
can be gotten by adding a column r-tuple 0 at the beginning of Lr and then
adding at the bottom the vector 1 composed entirely of 1’s. Here we do not
follow the usual convention, that of Example 1.3.4, where the parity check bit
is added at the end. Instead it is more natural to add the column 0, the binary
representation of the integer 0, at the front of the lexicographic matrix.

Examples.

EL1 =

]
0 1

1 1

�
and EL2 =

 0 0 1 1
0 1 0 1

1 1 1 1



EL3 =


0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1



EL4 =


0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


To see that ELr is a check matrix for the extended lexicographic Hamming
code, first note that its r + 1 rows are linearly independent rows; so at least it
has the right rank. If c = (c1, . . . , cn) is a word from the Hamming code, then
the corresponding extended word is cI = (c0, c1, . . . , cn) where c0 =

�n
i=1 ci

is the overall parity check symbol. The codeword cI has dot product 0 with
each of the first r rows, since its original form c in the Hamming code has dot
product 0 with the corresponding row of Lr. Also the dot product of c

I with 1
is c0 + c1 + · · ·+ cn = (

�n
i=1 ci) + c1 + · · ·+ cn = 0. Therefore ELr is indeed a

check matrix for the extended Hamming code as described.
We can think of our construction of binary Hamming codes as a greedy

construction. We begin with an integer r and try to construct the check matrix
for a 1-error-correcting binary linear code of redundancy r that, subject to this,
is of maximal length. We add new columns to a check matrix, being careful
at each stage not to reduce the minimum distance below three. By Lemma
3.1.12 we can do this provided at each stage we add a new column that is not
linearly dependent upon any previous column. As our field is F2, this amounts
to avoiding repeat columns and the 0 column.
This approach to Hamming codes easily extends to linear codes over finite

fields Fq other than F2. Again, begin with r and construct a check matrix for
a long 1-error-correcting linear code over Fq with redundancy r. Each time we
add a new column to our matrix, we must take care that it does not depend
linearly upon any previously chosen column. We avoid 0 always, so initially
we can choose from among qr − 1 nonzero column r-tuples. When we add in a
nonzero column, we remove not just it from further consideration but each of its
q − 1 multiples by the nonzero elements of Fq. Therefore the maximum length
possible is (qr − 1)/(q− 1). One easy way of constructing such a matrix of this

52 CHAPTER 4. HAMMING CODES

maximum length is to choose as columns all nonzero r-tuples whose top-most
nonzero entry is 1. A linear code over the finite field Fq is a Hamming codeHamming code

of redundancy r, written Hamr(q), if it has a check matrix whose collection of
columns contains a unique nonzero scalar multiple of each nonzero r-tuple from
Fq. In particular any code that is monomially equivalent to a Hamming code
is again a Hamming code. Note that this general definition includes that for
binary Hamming codes given above.

Examples.
(i) Our original description of Ham2(3), a ternary Hamming code of

redundancy 2, was in terms of the check matrix]
1 1 2 0
0 1 1 1

�
.

A ternary Hamming code of redundancy 2 can also be constructed from
the “lexicographic” check matrix]

0 1 1 1
1 0 1 2

�
.

(ii) With q = 9, r = 2, and n = (92 − 1)/(9 − 1) = 10, one check
matrix for a Hamming code Ham2(9) of length 10 is]

0 1 1 1 1 1 1 1 1 1
1 0 1 2 i 1 + i 2 + i 2i 1 + 2i 2 + 2i

�
,

where i is a square root of 2 = −1 in F9.
(4.1.1) Theorem. A Hamming code of redundancy r(≥ 2) over the field F ,
|F | = q, is a linear }

qr − 1
q − 1 ,

qr − 1
q − 1 − r, 3

]
code and is a perfect 1-error-correcting code.

Proof. Set n = (qr − 1)/(q − 1), the length of the Hamming code C. As
the code has redundancy r, its dimension is n − r. As discussed above, the
argument applying Lemma 3.1.12 to prove that dmin(C) = 3 for binary codes
goes over to the general case; so C corrects single errors. The Sphere Packing
Condition 2.2.6 for correcting e = 1 error then says

|C| · |S1(∗)| ≤ |An| .
Here this takes the form

qn−r · D1 + (q − 1)ni ≤ qn .
That is,

qn−r · D1 + (q − 1)ni = qn−r · D1 + (q − 1)qr − 1
q − 1

i
= qn−r · qr ≤ qn .

Thus we in fact have equality in the Sphere Packing Condition 2.2.6 and the
Sphere Packing Bound 2.3.6. 2

4.1. BASICS 53

(4.1.2) Problem. Prove that the family of all q-ary Hamming codes is asymptoti-
cally bad, being associated with the point (0, 1) of the q-ary code region.

(4.1.3) Problem. Prove that a linear]
qr − 1
q − 1 ,

qr − 1
q − 1 − r, 3

�
code over the field Fq (a field with q elements) is a Hamming code.

Problem 4.1.3 says that, among linear codes, the Hamming codes are charac-
terized by their parameters – length, dimension, and distance. This is not the
case if we drop the assumption of linearity. Of course any coset of a Hamming
code Hamr(q) has the same parameters as the code. For q = 2 and for r ≤ 3,
the converse is true. This is trivial for r = 1, 2 and the case r = 3 is given as the
next problem. For q = 2 and r ≥ 4 nonlinear codes with Hamming parameters
exist that are not a coset of any Hamming code. Examples are constructed in
Problem 4.1.7 below. For q > 2 and r ≥ 2, nonlinear examples exist as well and
can be constructed in a manner related to that of Problem 4.1.7.

(4.1.4) Problem. Prove that a 1-error-correcting binary code of length 7 that
contains 16 vectors must be a coset of a [7, 4] Hamming code.

(4.1.5) Problem. Let C1 be an [n, k1, d1] linear code over F , and let C2 be a
[n, k2, d2] linear code code over F . Form the code

C = { (y ;x+ y) | x ∈ C1, y ∈ C2 }.

(a) If C1 has generator matrix G1 and C2 has generator matrix G2, prove that C
is a [2n, k1 + k2] linear code over F with generator matrix

G =

]
0 G1
G2 G2

�
,

where the upper left 0 is a k1 × n matrix entirely composed of 0’s.
(b) Prove that dmin(C) = min(d1, 2d2).
(c) Under the additional assumption d1 > 2d2, prove that all codewords of minimum

weight in C have the form (y ;y), where y has minimum weight in C2.

(4.1.6) Problem. Formulate and prove the appropriate version of Problem 4.1.5
for nonlinear C1 and C2.

(4.1.7) Problem. In Problem 4.1.5 let C1 = Hamr−1(2) and C2 = Fn2 where
n = 2r−1−1. Then C has length 2n = 2r−2, dimension 2r−1−1−(r−1)+2r−1 = 2r−r,
and minimum distance 2. Furthermore all codewords of weight 2 in C have the shape
(y ;y), for y ∈ Fn2 of weight 1. Consider now the code

C∗ = { (y ;x+ y ; c) | x ∈ Hamr−1(2), y ∈ Fn2 , c = y · 1+ f(x) },

where 1 ∈ Fn2 is the vector with all coordinates equal to 1, y ·1 is the usual dot product,
and f is any function from Hamr−1(2) to F2.

54 CHAPTER 4. HAMMING CODES

(a) Prove that C∗ is a code with the same length, size, and minimum distance as
Hamr(2).

(b) Prove that C∗ is linear if and only if the function f is a linear map on
Hamr−1(2) (that is, for all x1,x2 ∈ Hamr−1(2), we have f(x1)+f(x2) = f(x1+x2).)

(c) Prove that, for all r ≥ 4, there exist binary codes C∗ with the same parameters
as the Hamming codes Hamr(2) that are not equal to a coset of any Hamming code.

Any check matrix H for a Hamming code Hamr(q) can be easily used for
syndrome decoding. Upon encountering a nonzero syndrome s = Hxd, we must
survey the columns of H for a scalar multiple of s. If s is αh, where h is the ith

column of H, then we assume that the error vector had weight one with entry
α in its ith coordinate, and decode accordingly.

(4.1.8) Problem. Consider the ternary [13, 10] Hamming code with check matrix 0 0 0 0 1 1 1 1 1 1 1 1 1
0 1 1 1 0 0 0 1 1 1 2 2 2
1 0 1 2 0 1 2 0 1 2 0 1 2

 .
Decode the received word

(2, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1) .

(4.1.9) Problem. Consider a binary [n, k] linear code Cr with redundancy r = n−k
and standard generator matrix

]
Ik×k |A

�
, for some k × r binary matrix A.

(a) Prove that dmin(C) ≥ 3 if and only if the rows of A are pairwise distinct
r-tuples of weight at least 2.

(b) Using the result from (a), prove that the maximum possible number of rows in
A for a 1-error-correcting code Cr is 2

r−1−r and that, in this case, C is a Hamming
code Hamr(2).

In constructing codes with a fixed minimum distance d we hope for codes
whose dimension is a large fraction of their length or, equivalently, whose redun-
dancy is small compared to their length. Let sq(n, f) =

�f
i=0

D
n
i

i
(q−1)i be the

volume of a sphere of radius f in Fnq . The Gilbert-Varshamov Theorem 2.2.7
proved, by a greedy construction of codewords, that there is in Fnq a code C
with minimum distance d and satisfying |C| ≥ qn/sq(n, d− 1). That is, we can
find a code C with distance d and length n whose redundancy r = n− logq(|C|)
is bounded above by

qr ≤ sq(n, d− 1) .
In this section we have used greedy constructions instead to construct the check
matrices of Hamming codes. We pursue this in Problem 4.1.10 and find, via
a greedy construction of a check matrix, that there is a linear code C with
minimum distance d and redundancy r whose length n is bounded below by

qr ≤ sq(n, d− 2) .
This small improvement may be relevant in specific cases; but, since in the limit
(d−1)/n and (d−2)/n are indistinguishable, the asymptotic bound of Theorem

4.2. HAMMING CODES AND DATA COMPRESSION 55

2.3.7 is not affected. Although the bounds have a very similar appearance, the
two constructions are essentially different in character. The first endeavors to
constructs a code of small redundancy with given length, while the second tries
to construct a long code with given redundancy.

(4.1.10) Problem. (a) Let H be an r×m matrix with entries from Fq. For a fixed
positive integer d, prove that the number of column r-tuples that linearly depend upon
some subset of d− 2 columns from H is at most

�d−2
i=0

i
m
i

J
(q − 1)i = sq(m,d− 2).

(b) (Linear Gilbert-Varshamov Bound) Prove that there exists a linear code
C over Fq of minimum distance d and redundancy r whose length n satisfies

qr ≤ sq(n, d− 2) .

4.2 Hamming codes and data compression

Hamming codes can also be used for data compression allowing a small amount
of distortion (loss of information) by “running the machine backwards.”
Choose a generator matrix G for a Hamming code Hamr(q) of length n over

F . Each n-tuple x from Fn is at distance at most 1 from a unique codeword c
of Hamr(q). Instead of storing the n-tuple x, store the smaller message (n− r)-
tuplem, the unique solution tomG = c. At decompression, the stored message
m is “encoded” to c = mG, which differs from the original data vector x in
at most one position. This works because spheres of radius one around the
codewords of Hamr(q) cover the whole codespace F

n.
Consider a code C of length n over the alphabet A. In general the covering

radius of a code C, denoted cr(C), is the smallest number r such that the spheres covering radius

of radius r around the codewords of C cover the entire codespace An, that is,
An =

	
c∈C Sr(c). Data compression problems are basically dual to those of

error correction. A good code for correcting errors has a large number of words
but still has large minimum distance. A good data compression code has a small
number of words but still has a small covering radius. As with correction, these
are conflicting goals.
Data compression questions have been considered for almost as long as those

of error correction. Sometimes they have been phrased in terms of the “foot-
ball pools” or lottery problem. Typically in the lottery, each ticket purchased
contains a collection of numbers (selected by the purchaser and from some fixed
range A). Whether or not a given ticket is a winner or loser depends upon
how well its numbers match those of a master ticket which is selected at a later
time. If in order to win it is not necessary for a given ticket to match all of the
master lottery numbers but only miss at most f of them, then a question arises.
What is the smallest number of lottery tickets I must choose and buy in order
to guarantee that I have a ticket on which at most f numbers are wrong? What
is being sought is a small code (the collection of purchased lottery tickets) that
has covering radius at most f . For the football pools problem, the alphabet A
is ternary, since each match result being predicted has three possible outcomes:
‘win’ (for the home team, say), ‘lose’, or ‘draw’.

56 CHAPTER 4. HAMMING CODES

For a Hamming code, the covering radius is 1. Indeed, for any perfect e-
error-correcting code, the covering radius is e.

(4.2.1) Proposition. Let C be an e-error-correcting code. Then cr(C) ≥ e
with equality if and only if C is a perfect e-error-correcting code.

Proof. As C is an e-error-correcting code, the spheres of radius e around
codewords are pairwise disjoint. Therefore the spheres of radius e − 1 around
codewords do not cover the whole space. Thus cr(C) > e−1, whence cr(C) ≥ e.
If we have equality, then we must have equality in the Sphere Packing Bound
2.2.6, hence the code is perfect. 2

(4.2.2) Proposition. The covering radius of the linear code C is equal to
the maximum weight of a coset leader.

Proof. The coset of the word −x consists of the sum of −x with each
individual codeword of C; so the weights of the coset members give the distances
of x from the various codewords. The minimal such weight is thus the distance
of x from the code and also the weight of a coset leader. The maximum weight
of a coset leader is therefore the largest distance of any word x from the code.
2

As with dmin, the covering radius of a code is, in general, difficult to compute.
The following problem, reminiscent of Problem 4.1.5, can be of great help.

(4.2.3) Problem. Let the [n1, k1] linear code C1 over F have generator matrix G1,
and let the [n2, k2] linear code C2 over F have generator matrix G2. Consider the
[n1 + n2, k1 + k2] linear code C over F with generator matrix

G =

]
0 G1
G2 ∗

�
,

where the upper left 0 is a k1 × n2 matrix of 0’s and the lower right ∗ is an arbitrary
k2 × n1 matrix with entries from F .

Prove that cr(C) ≤ cr(C1) + cr(C2).

4.3 First order Reed-Muller codes

In 1954, I.S. Reed and D.E. Muller introduced independently a class of binary
codes of length 2m, for any integer m, associated with Boolean logic. The first
of these codes, for each m, fits naturally into the context of Hamming codes.
A code dual to a binary extended Hamming code is called a first order Reed-

Muller code, denoted RM(1,m) where m is the redundancy of the associatedfirst order Reed-Muller code

Hamming code. Any code that is equivalent to a first order Reed-Muller code is
also first order Reed-Muller. We shall concentrate on the specific codeRM(1,m)
with generator matrix ELm.
The associated dual Hamming code is sometimes called a shortened first

order Reed-Muller code or a simplex code. The dual Hamming code can beshortened first order
Reed-Muller code

simplex code

4.3. FIRST ORDER REED-MULLER CODES 57

easily recovered from RM(1,m). Indeed by first choosing all the codewords of
RM(1,m) that have a 0 in their first coordinate position and then deleting this
now useless coordinate, we find the dual Hamming code. This is clear when we
consider how the matrix ELm was constructed by bordering the matrix Lm, the
generator matrix of the dual lexicographic Hamming code. (See page 51.)
Having earlier constructed the generator ELm as a matrix in bordered block

form, we now examine it again, but blocked in a different manner. Notice that
RM(1, 1) = F22, RM(1, 2) is the parity check code of length 4, and RM(1, 3) is
a self-dual extended [8, 4] Hamming code.

Examples.

EL1 =

]
0 1

1 1

�
and EL2 =

 0 0 1 1

0 1 0 1
1 1 1 1



EL3 =


0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1



EL4 =


0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1


For i between 2m−1 and 2m, the column m-tuple containing the binary rep-
resentation of i is just that for i − 2m−1 with its leading 0 replaced by a 1.
Therefore, if we ignore the top row of ELm, then the remaining m rows consist
of an m× 2m−1 matrix repeated twice. Indeed this repeated matrix is nothing
other than ELm−1. We now observe the recursive construction:

ELm =

}
0 · · · 0 1 · · · 1
ELm−1 ELm−1

]
.

(4.3.1) Theorem. For each m, the first order Reed-Muller code RM(1,m)
is a binary linear [2m,m+ 1, 2m−1] code.

Proof. Certainly RM(1,m) is linear of length 2m, and its dimension m+1
is evident from the generator matrix ELm. From their generator matrices EL1
and EL2, it is easy to see that RM(1, 1) (= F22) and RM(1, 2) (the parity check
code of length 4) both have minimum distance 2m−1.
We now verify the minimum distance in general by induction, assuming that

we already have dmin(RM(1,m − 1)) = 2m−2. Let C1 be RM(1,m − 1) with
minimum distance d1 = 2m−2, and let C2 be the repetition code of length
2m−1, whose minimum distance is therefore d2 = 2

m−1. The generator matrix
ELm for RM(1,m) is then constructed from the generators G1 = ELm−1 and
G2 = [1 · · · 1] according to the recipe of Problem 4.1.5. Therefore, by that
problem, we have

dmin(RM(1,m)) = min(2d1, d2) = min(2.2
m−2, 2m−1) = 2m−1 ,

58 CHAPTER 4. HAMMING CODES

as claimed. 2

(4.3.2) Theorem. The first order Reed-Muller code RM(1,m) consists of a
unique word of weight 0, namely 0, a unique word of weight 2m, namely 1, and
2m+1 − 2 words of weight 2m−1.

Proof. The last row of the generator matrix ELm is 1; so 0 and 1 are
the unique codewords of weight 0 and 2m, respectively. By Theorem 4.3.1 the
linear code RM(1,m) has no codewords c of weight between 0 and 2m−1, and
so it also has no codewords 1+ c of weight between 0 and 2m−1. That is, it has
no codewords of weight between 2m−1 and 2m. Therefore all codewords other
than 0 and 1 have weight exactly 2m−1. 2

(4.3.3) Corollary. The dual of the binary Hamming code of redundancy
m consists of a unique word of weight 0, namely 0, and 2m − 1 words of weight
2m−1.

Proof. In recovering the dual Hamming code from RM(1,m), we shorten
the code by taking all codewords that begin with 0 and then delete that position.
In particular the codeword 1 of RM(1,m) does not survive. But by Theorem
4.3.2 all other nonzero codewords of RM(1,m) have weight 2m−1. As only zeros
are deleted, all the nonzero codewords of the dual Hamming code also will have
weight 2m−1. 2

These dual Hamming codes are equidistant codes in that distinct codewordsequidistant codes

are at a fixed distance from each other, here 2m−1. They satisfy the Plotkin
bound 2.3.8 with equality. (The proof of the Plotkin bound as given in Prob-
lem 3.1.5 compares the minimum distance with the average distance between
codewords. For an equidistant code these are the same.)
For a binary word x ∈ Fn2 , consider the corresponding word x∗ ∈ {+1,−1}n

gotten by replacing each 0 by the real number +1 and each 1 by −1.

(4.3.4) Lemma. If x,y ∈ Fn2 , then as vectors of real numbers x∗ · y∗ =
n− 2dH(x,y). In particular if x,y ∈ F2h2 with dH(x,y) = h, then x

∗ · y∗ = 0.

Proof. The dot product of two ±1 vectors is the number of places in which
they are the same minus the number of places where they are different. Here
that is (n− dH(x,y))− dH(x,y). 2

Let RM(1,m)± be the code got by replacing each codeword c of RM(1,m)
with its ±1 version c∗. List the codewords of RM(1,m)± as c∗1, c∗2, . . . , c∗2m+1 .

(4.3.5) Lemma. If c∗ ∈ RM(1,m)± then also −c∗ ∈ RM(1,m)±. We have
c∗i · c∗j = 2m if c∗i = c

∗
j

= −2m if c∗i = −c∗j
= 0 if c∗i W= ±c∗j .

4.3. FIRST ORDER REED-MULLER CODES 59

Proof. As 1 ∈ RM(1,m) we have (1 + c)∗ = −c∗ ∈ RM(1,m)±. By
Theorem 4.3.2, if distinct b, c ∈ RM(1,m) with b W= 1 + c, then dH(b, c) =
2m−1. The lemma follows from Lemma 4.3.4. 2

We use this lemma as the basis of a decoding algorithm. When a vector r
is received, calculate each of the dot products r · c∗i , for i = 1, . . . , 2m+1. Then
decode to that codeword c∗j that maximizes the dot product.
In fact this can be done a little more efficiently. Arrange our listing of

RM(1, r) so that c∗i+2m = −c∗i , for each i = 1, . . . , 2m. That is, the second half
of the list is just the negative of the first half. In decoding, we calculate only
those dot products from the first half r · c∗i , for i = 1, . . . , 2m, and select that j
that maximizes the absolute value |r · c∗j |. The received word r is then decoded
to c∗j if r · c∗j is positive and to −c∗j if r · c∗j is negative.
We organize this as Hadamard transform decoding. Set n = 2m, and let Hn Hadamard transform decoding

be the n × n matrix whose ith row is the codeword c∗i . The dot products of
Lemma 4.3.5 then give

HnH
d
n = n In×n ,

since the negative of a row of Hn is never a row. Upon receiving the vector r,
we calculate its Hadamard transform �r = Hnr

d. If �rj is that coordinate of �r
that has the largest absolute value, then we decode r to c∗j in case �rj > 0 or to
to −c∗j in case �rj < 0.
An important aspect of Hadamard transform decoding is that it is a soft

decision algorithm rather than a hard decision algorithm. We need not require
that the received vector r have entries ±1. Its entries can be arbitrary real
numbers, and the algorithm still works without modification.

Example. Consider the code RM(1, 3)± which comes from RM(1, 3) of
length n = 23 = 8 with generator matrix EL3. Let

H8 =



+1 +1 +1 +1 +1 +1 +1 +1
+1 −1 +1 −1 +1 −1 +1 −1
+1 +1 −1 −1 +1 +1 −1 −1
+1 −1 −1 +1 +1 −1 −1 +1
+1 +1 +1 +1 −1 −1 −1 −1
+1 −1 +1 −1 −1 +1 −1 +1
+1 +1 −1 −1 −1 −1 +1 +1
+1 −1 −1 +1 −1 +1 +1 −1


,

so H8H
d
8 = 8 I8×8. The codewords of RM(1, 3)

± are then the rows of H8

and their negatives.
Suppose we receive the vector r = (1, 1,−1, 1,−1,−1, 1, 1). This has

Hadamard transform H8r
d = (2,−2, 2,−2, 2,−2, 6, 2). The entry with

largest absolute value is 0r7 = 6 > 0, so we decode to
c∗7 = (+1,+1,−1,−1,−1,−1,+1,+1) .

If next we receive r = (−.7, 1, 0,−.8,−.9, 1, .9,−1), then

H8r
d = (−.5,−.9, 1.3,−6.3,−.5,−.9, .9, 1.3) .

60 CHAPTER 4. HAMMING CODES

The entry with largest absolute value is 0r4 = −6.3 < 0, so we decode to
−c∗4 = (−1,+1,+1,−1,−1,+1,+1,−1) .

(4.3.6) Problem. Assume that you are using the code RM(1, 3)± of the example.
Use Hadamard transform decoding to decode the received word

(.5 , .4 , −.6 , .5 , .6 , −.3 , .5 , −.6) .

For any positive integer n, a ±1 square matrix Hn of side n that satisfies

HnH
d
n = n In×n

is called a Hadamard matrix. If we take as a code the rows of Hn and theirHadamard matrix

negatives, then Hadamard transform decoding will work exactly as described
above. Such a code (or its {0, 1} counterpart) is called a Hadamard code.Hadamard code

(4.3.7) Problem. Prove that a Hadamard matrix Hn must have n = 1, 2 or n a
multiple of 4. (Remark. It is a long-standing conjecture of combinatorial design the-
ory that the converse of this problem is true: for each such n, there exists a Hadamard
matrix.)

Begin with a Hadamard code of length n. Choose those n codewords that
start with +1, drop that position, and translate back to a {0, 1} code. The result
is a binary code of length n− 1 and size n which is equidistant of distance n/2.
A code constructed in this fashion is a shortened Hadamard code. Starting withshortened Hadamard code

the matrix H8 of the example above, we recover from RM(1, 3) and RM(1, 3)±

the [7, 3] dual Hamming code.

(4.3.8) Problem. Let h be a positive integer. Let C be a binary equidistant code of
length 2h− 1 and size 2h with distance h.

(a) Prove that C is a shortened Hadamard code.

(b) Prove that C meets the Plotkin bound 2.3.8 with equality.

Although any Hadamard matrix can be used to design a code that allows
Hadamard transform decoding, there are certain advantages to be gained from
using those matrices that come from Reed-Muller codes as described. The
existence of a soft decision algorithm is good, but we hope to implement it as
efficiently as possible. Consider decoding using the matrix H8 of the example.
Each decoding process requires 63 operations, 56 additions for calculating the
8 dot products and 7 comparisons among the answers. (By convention the
operation of negation is considered to make no contribution.) Certain annoying
repetitions are involved. For instance, both the second and the sixth rows of H8
begin +1,−1,+1,−1; so the corresponding calculation r1− r2+ r3− r4 is made
twice during the decoding process. Can this and other patterns within H8 be
exploited? The answer is “yes,” and it is this fact that makes a matrix derived
from RM(1,m) a better choice than other Hadamard matrices with the same
dimensions.

4.3. FIRST ORDER REED-MULLER CODES 61

Let H1 = [1], a 1×1 Hadamard matrix, and define recursively a 2m+1×2m+1
matrix in block form

H2m+1 =

}
+H2m +H2m
+H2m −H2m

]
.

Then

H2 =

}
+1 +1
+1 −1

]
,

and

H4 =


+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

 =

+1 +1 +1 +1
+1 −1 +1 −1
+1 +1 −1 −1
+1 −1 −1 +1

 .
The matrix H8 is that of the example. This construction can be continued,
for all m. The matrix H2m produced is a Hadamard matrix associated with
RM(1,m)± and the Reed-Muller code RM(1,m) whose generator matrix is
ELm. The recursive construction of H2m is related to that of ELm and admits
a streamlined implementation of decoding for RM(1,m) and RM(1,m)±, using
the so-called Fast Hadamard Transform or FHT algorithm. For instance, FHT
decoding of RM(1, 3)± can be achieved with 31 operations rather than the 63
counted previously.
The Reed-Muller codes in general, and the code RM(1, 3) in particular, are

important codes that often arise as constituents of larger codes. It is therefore
worthwhile to have decoding algorithms that are as efficient as possible. Sun and
Van Tilborg have given a soft decision algorithm for RM(1, 3) that is related to
FHT decoding but only needs, on the average, 14 operations with worst-case
performance of 17 operations.

62 CHAPTER 4. HAMMING CODES

