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Newton’s method







     24

If X
[image: image135.wmf]x)

 

y

(

g

=

, X
[image: image2.wmf]1

, X
[image: image3.wmf]2

, … are close to r

[image: image4.wmf]2

)

(

1

n

n

x

x

-

»

-

+

r

r

K



[image: image5.wmf]2

)]

(

[

)

(

1

n

n

x

x

-

»

-

+

r

r

K

K



[image: image6.wmf]]

)]

(

[

)]

(

[

{

2

2

1

2

}

2

1

-

n

-

n

x

x

-

=

»

-

r

r

K

K

K



[image: image7.wmf]1

2

0

)]

(

[

+

-

»

n

r

K

x


If  
[image: image8.wmf]1

)

(

0

<

-

x

r

K

 then as 
[image: image9.wmf]0

)

(

,

1

®

+

-

¥

®

n

x

r

K

n

 and hence 
[image: image10.wmf]r

®

n

x

. Thus Newton’s method converges if 
[image: image11.wmf]0

x

is chosen so that


[image: image12.wmf]|

|

(r)

f"

(r)

f'

2

1

|

0

|

=

<

-

K

r

x

,

That is if  
[image: image13.wmf]0

x

 is sufficiently close to r.If K is large, an accurate initial estimate is needed to ensure convergence. The bisection method could be used to generate the initial estimate.
Stopping test
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(Mean Value Theorem)
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 which is much  smaller than the given tolerance. This error is essential due to the number  of digits used  in the calculation; using more  digits  shows that the error  in   is approximately 4.3
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Self Assessment Exercises 2.4

1. Using 
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2.5 Secant Method
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Figure 2.8. In the secant method the function in approximated by a chord

Equating two expressions for the slope of the chord gives
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And solving for 
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The next approximation
[image: image83.wmf]3

x

is calculated in the same way from 
[image: image84.wmf]1

x

and 
[image: image85.wmf]2

x

and so on, so that the secant method can be written as


[image: image86.wmf])

1

(

)

(

)

1

(

)

(

1

-

-

-

-

-

-

=

+

n

f

n

f

n

n

f

n

n

x

x

x

x

n

x

x

x



n = 1, 2, ….
Convergence

For some problems, the secant method may not converge for some choice of 
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For a sample root with 
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Note that there is only function evaluation per iteration.

( Worked Example 2.5.1 Carry out two iterations of the secent method with 
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After 2 iterations the estimate is r
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Self Assessment Exercises 2.5
1. Using the secent method with
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2. Calculate the negative solution of 
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Newton’s method algoritm





INPUT x0, tolerance EPS, maximum number of iteration MAX


For i=1 to MAX do 3. to 5.


x1=x0-f(x0)/fdash(x0)


If abs(x1-x0) � EMBED Equation.3  ���EPS OUTPUT “Solution is x1” & stop


x0=x1


OUTPUT “Method hasn’t converged – current estimate is x1”; stop
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Secant method algoritm





INPUT x0,x1 tolerance EPS, maximum number of iteration MAX


F0=f(x0); f1=f(x1)


For i=1 to MAX do 4. to 6.


     x1=x0-f(x0)/fdash(x0)


     If abs(x2-x1) � EMBED Equation.3  ���EPS OUTPUT “Solution is x2” & stop


     x0=x1;f0=f1; x1=x2; f1=f(x2)


OUTPUT “Method hasn’t converged – current estimate is x1”; stop









This equation shows, as pointed out previously, that the error x[image: image116.wmf]is not necessarily small when f(x[image: image117.wmf]) is small.
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