Introduction to Cryptography CS 355

Lecture 4

The Vigenère Cipher

Lecture Outline

- Vigenère cipher.
- Attacks on Vigenere:
 - Kasisky Test
 - Index of Coincidence
 - Frequency analysis

Towards the Polyalphabetic Substitution Ciphers

- Main weaknesses of monoalphabetic substitution ciphers
 - each letter in the ciphertext corresponds to only one letter in the plaintext letter
- Idea for a stronger cipher (1460's by Alberti)
 - use more than one cipher alphabet, and switch between them when encrypting different letters
- Developed into a practical cipher by Vigenère (published in 1586)

The Vigenère Cipher

Definition:

Given m, a positive integer, $P = C = (Z_{26})^n$, and $K = (k_1, k_2, ..., k_m)$ a key, we define: Encryption:

 $e_k(p_1, p_2... p_m) = (p_1+k_1, p_2+k_2...p_m+k_m) \pmod{26}$ Decryption:

 $d_k(c_1, c_2... c_m) = (c_1-k_1, c_2-k_2... c_m-k_m) \pmod{26}$

Example:

Plaintext:CRYPTOGRAPHYKey:LUCKLUC KLUCKCiphertext:NLAZEIIBLJJI

Security of Vigenere Cipher

- Vigenere masks the frequency with which a character appears in a language: one letter in the ciphertext corresponds to multiple letters in the plaintext. Makes the use of frequency analysis more difficult.
- Any message encrypted by a Vigenere cipher is a collection of as many shift ciphe are letters in the key.

Vigenere Cipher: Cryptanalysis

- Find the length of the key.
- Divide the message into that many shift cipher encryptions.
- Use frequency analysis to solve the resulting shift ciphers.
 - how?

How to Find the Key Length?

- For Vigenere, as the length of the keyword increases, the letter frequency shows less English-like characteristics and becomes more random.
- Two methods to find the key length:
 - Kasisky test
 - Index of coincidence (Friedman)

Kasisky Test

- Note: two identical segments of plaintext, will be encrypted to the same ciphertext, if the they occur in the text at the distance Δ, (Δ≡0 (mod m), m is the key length).
- Algorithm:
 - Search for pairs of identical segments of length at least 3
 - Record distances between the two segments: $\Delta 1$, $\Delta 2$, ...
 - m divides gcd(Δ 1, Δ 2, ...)

Example of the Kasisky Test

Key	K	Ι	Ν	G	K	Ι	Ν	G	K	Ι	Ν	G	K	Ι	Ν	G	K	Ι	N	G	K	Ι	Ν	G
PT	t	h	е	S	u	n	а	n	d	t	h	е	m	а	n	i	n	t	h	е	m	0	0	n
СТ	D	Ρ	R	Y	E	V	N	Т	N	В	U	K	W	Ι	A	0	Х	В	U	K	W	W	В	Т

Index of Coincidence (Friedman)

Informally: Measures the probability that two random elements of the n-letters string x are identical.

Definition:

Suppose $x = x_1 x_2 ... x_n$ is a string of n alphabetic characters. Then $I_c(x)$, the index of coincidence is:

$$I_c(x) = P(x_i = x_j)$$

Index of Coincidence (cont.)

Reminder: binomial coefficient

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$

- Consider the plaintext x, and f₀, f₁, ... f₂₅ are the frequencies with which A, B, ... Z appear in x and p₀, p₁, ... p₂₅ are the probabilities with which A, B, ... Z appear in x.
- We want to compute $I_c(x)$.

Index of Coincidence (cont.)

- We can choose two elements out of the string of size n in $\binom{n}{2}$ ways
- For each i, there are $\begin{pmatrix} f_i \\ 2 \end{pmatrix}$ ways of choosing the elements to be i

$$I_{C}(x) = \frac{\sum_{i=0}^{S} \binom{f_{i}}{2}}{\binom{n}{2}} = \frac{\sum_{i=0}^{S} f_{i}(f_{i}-1)}{n(n-1)} \approx \frac{\sum_{i=0}^{S} f_{i}^{2}}{n^{2}} = \sum_{i=0}^{S} p_{i}^{2}$$

Index of Coincidence of English

• For English, S = 25 and p_i can be estimated

Letter	p _i						
А	.082	Н	.061	0	.075	V	.010
В	.015	Ι	.070	Р	.019	W	.023
С	.028	J	.002	Q	.001	X	.001
D	.043	K	.008	R	.060	Y	.020
Е	.127	L	.040	S	.063	Ζ	.001
F	.022	М	.024	Т	.091		
G	.020	Ν	.067	U	.028		

$$I_{c}(x) = \sum_{i=0}^{i=25} p_{i}^{2} = 0.065$$

Finding the Key Length

 $y = y_1 y_2 \dots y_{n,}$, m is the key length

Guessing the Key Length

If m is the key length, then the text ``looks like"
English text

$$I_c(y_i) \approx \sum_{i=0}^{i=25} p_i^2 = 0.065 \quad \forall 1 \le i \le m$$

 If m is not the key length, the text ``looks like" random text and:

$$I_c \approx \sum_{i=0}^{i=25} (\frac{1}{26})^2 = 26 \times \frac{1}{26^2} = \frac{1}{26} = 0.038$$

Summary

 Vigenère cipher is vulnerable: once the key length is found, a cryptanalyst can apply frequency analysis.

Recommended Reading for This Lecture

- Trappe & Washington
 - Section 2.3
- The Code Book
 - Chapter 2

Coming Attractions ...

- Enigma Machine
- Recommended Reading
 - Trappe & Washington: 2.12
 - The Code Book: Chapters 3 & 4

