PHYSICAL CHEMISTRY

NANIK DWI NURHAYATI, S.SI, M.SI

nanikdn.staff.uns.ac.id nanikdn.staff.fkip.uns.ac.id 081556431053 / (0271) 821585

Law of Thermodynamics

The Zero Law of Thermodynamics
The First Law of Thermodynamics
The Second Law of Thermodynamics
The Third Law of Thermodynamics

Thermodynamics

State functions are properties that are determined by the state of the system, regardless of how that condition was achieved.

- Potential energy of hiker 1 and hiker 2 is the same even though they took different paths.
- Like total energy, *E*, and enthalpy, *H*, entropy is a state function. Therefore, $\Delta S = S_{\text{final}} S_{\text{initial}}$

The Second Law of Thermodynamics

The entropy of the universe does not change for reversible processes and increases for spontaneous processes.

$$\Delta S_{univ} = \Delta S_{system} + \Delta S_{surroundings} = 0$$

Reversible (ideal):

 $\Delta S_{univ} = \Delta S_{system} + \Delta S_{surroundings} > 0$ Irreversible (real, spontaneous):

The entropy of the universe increases (real, spontaneous processes) al But, entropy can decrease for individual systems.

Entropy Changes in Surroundings

• Heat that flows into or out of the system also changes the entropy of the surroundings.

 $\Delta S_{surr} = \frac{-q_{sys}}{T}$

• For an isothermal process:

• At constant pressure, q_{sys} is simply ΔH° for the system. $-q_{sys} = -\Delta H^{\circ}$

$$\Delta S_{surr} = \frac{-q_{sys}}{T} = \frac{-\Delta H}{T}$$

ENTROPY CHANGES SYSTEMS

1. Reversibly Processes

T_{sys} = T_{surr} P, V dan T-nya.

> S = q / T $q = q_{rev}$ $dS = dq_{rev} / T$ $\Delta S = q_{rev} / T$

dS = dq/T $dq = dq_{rev}$

Determaint Entropy Changes Reversibly Processes

1. Adiabatik Process, dq = 0

 $dq_{rev} = 0$, and $dS = 0 \rightarrow S$

so
$$\rightarrow dq_{rev} = 0$$
 and $dS = 0$

2. Isotermal Process,

PV = nRT and dq = Cv.dT

SO

$$S_{2} - S_{1} = \int_{1}^{2} \frac{d' Q_{r}}{T} = \frac{1}{T} \int_{1}^{2} d' Q_{r} = \frac{Q_{r}}{T}$$

$$(\mathbf{s}_{2} - \mathbf{s}_{1})_{v} = \int_{\mathbf{T}_{1}}^{\mathbf{T}_{2}} \mathbf{c}_{v} \frac{\mathbf{dT}}{\mathbf{T}}$$
$$(\mathbf{s}_{2} - \mathbf{s}_{1})_{v} = \mathbf{c}_{v} \ln \frac{\mathbf{T}_{2}}{\mathbf{T}_{1}}$$

3. Isotermal in the ideal Gas

$$\Delta S = q_{rev} = nRT \ln V_2 / V_1$$

Calculate entropy exchange surroundings when 1 mol $H_2O(I)$ at 25°C!

H₂(**g**) + ½ **O**₂(**g**) ---> **H**₂**O** (**liq**) ∆ H = -285,8 KJ mol-1

 $\Delta S = -\Delta H/T = -(-286 \times 1000J)/298 K$ = 959 Jk⁻¹ Eksoterm S

Law 1 & 2 THERMODyNAMIKA

du = dq + dw

→ Fundamental Equality.

THANK YOU

