

Probability

Part 2 → calculate probabilities

Union...

 The union of two events is denoted if the event that occurs when either or both event occurs. It is denoted as:

A or B

 We can use this concept to answer questions like:
 Determine the probability that a fund outperforms the market *or* the manager graduated from a top-20 MBA program.

Example 1

Determine the probability that a fund outperforms (B_1) or the manager graduated from a top-20 MBA program (A_1).

 A_1 and B_1 occurs, A_1^{-} and B_2 occurs, or A_2 and B_1 occurs...

	B ₁	B ₂	P(A _i)
A_1	.11	.29	.40
A ₂	.06 🖌	.54	.60
P(B _j)	.17	.83	1.00

 $P(A_1 \text{ or } B_1) = .11 + .06 + .29 = .46$

Example Union...

Determine the probability that a fund outperforms (B_1)

or the manager graduated from a top-20 MBA program (A_1).

		B ₁		
		B ₁	B ₂	$P(A_i)$
A ₁	A_1	.11	.29	.40
	A ₂	.06	.54	.60
	$P(B_i)$.17	.83	1.00

 $P(A_1 \text{ or } B_1) = .11 + .06 + .29 = .46$

Probability Rules and Trees...

The Complement Rule
 The Multiplication Rule
 The Addition Rule

1. Complement Rule...

- The complement of an event A is the event that occurs when A does not occur.
- The *complement rule* gives us the probability of an event NOT occurring. That is:

 $\mathsf{P}(\mathsf{A}^{\mathsf{C}}) = 1 - \mathsf{P}(\mathsf{A})$

Example 2

in the simple roll of a die, the probability of the number "1" being rolled is 1/6.

The probability that some number other than "1" will be rolled is 1 - 1/6 = 5/6.

2. Multiplication Rule...

The *multiplication rule* is used to calculate the *joint probability* of two events. It is based on the formula for conditional probability defined earlier:

$$P(A \mid B) = \frac{P(A \text{ and } B)}{P(B)}$$

If we multiply both sides of the equation by P(B) we have:

 $P(A \text{ and } B) = P(A | B) \cdot P(B)$

Likewise, $P(A \text{ and } B) = P(B | A) \cdot P(A)$ If A and B are independent events, then

 $P(A \text{ and } B) = P(A) \cdot P(B)$

Recall: the *addition rule* was introduced earlier to provide a way to compute the probability of event A *or* B *or* both A and B occurring; i.e. the union of A and B.

P(A or B) = P(A) + P(B) - P(A and B)

Addition Rule...

- $P(A_1) = .11 + .29 = .40$ $P(B_1) = .11 + .06 = .17$
- By adding P(A) plus P(B) we add P(A and B) twice. To correct we subtract P(A and B) from P(A) + P(B)

		B ₁		
		B ₁	B ₂	P(A _i)
A ₁	A ₁	.11	.29	.40
	A ₂	.06	.54	.60
	P(B _i)	.17	.83	1.00

$$P(A_1 \text{ or } B_1) = P(A) + P(B) - P(A \text{ and } B)$$

= .40 + .17 - .11
= .46

Find the probablity of :

$$P(A_2 \text{ or } B_1)$$

Addition Rule for Mutually Excusive Events

- If and A and B are mutually exclusive the occurrence of one event makes the other one impossible. This means that
 P(A and B) = 0
- The addition rule for mutually exclusive events is
 P(A or B) = P(A) + P(B)
- We often use this form when we add some joint probabilities calculated from a probability tree

Exercise 1

2-49. If P(A) = 0.3, P(B) = 0.2, and $P(A \cap B) = 0.1$, determine the following probabilities: (a) P(A') (b) $P(A \cup B)$ (c) $P(A' \cap B)$ (d) $P(A \cap B')$ (e) $P[(A \cup B)']$ (f) $P(A' \cup B)$

Conditional Probability

- → The probability of event A occurring given event B
 → What we're interested in
 Is the number of outcome where both
- A and B occur, divided by all the B outcome

Or,

$$P(A|B) = \frac{P(A \cap B)}{P(B)}$$

Example 3

- DD Donuts are looking into the probabilites of their customers buying donuts and coffe. T. its know that P(Donuts)=3/4, P(Coffe|Donuts')=1/3 and P(Donuts∩Coffe)=9/20.
- Find P(Coffe|Donuts) !

Exercise 2

2-57. Disks of polycarbonate plastic from a supplier are analyzed for scratch and shock resistance. The results from 100 disks are summarized as follows:

		shock	resistance
		high	low
scratch	high	70	9
resistance	low	16	5

Let A denote the event that a disk has high shock resistance, and let B denote the event that a disk has high scratch resistance. Determine the following probabilities:

(a)
$$P(A)$$
 (b) $P(B)$
(c) $P(A|B)$ (d) $P(B|A)$

