

Hypothesis Testing

Part 2

STEP:

- 3) GOAL: determine if there is enough evidence to infer that H₁ is TRUE
- 4) Two possible decisions:

- Reject H_0 in favor of H_1
- NOT Reject H₀ in favor of H₁

- Type I: reject a true H_0 [P(TypeI)= α]
- Type II: not reject a false H_0 [P(Type II)= β]

Significance Level

Ex

 $H0: \mu = \mu 0$

Step on arrange hypothesis

 $H_1: \theta \neq \theta_0$

 $b.H_0: \theta = \theta_0$

 $H_1: \theta > \theta_0$

 $c.H_0:\theta=\theta_0$

 $H_1: \theta < \theta_0$

Hypothesis : $a_{.}H_{0}: \theta = \theta_{0}$

H1:

One of Learning methods better than the other

H1:

Learning Methods A better than B

🏭 H1:

Learning Methods A worse than B

H0: $\theta = \theta 0$ H1: $\theta < \theta 0$

Rejection region/

α

acceptance region

H0 accepted if

 $z \geq -z_{\alpha}$

 $Z = \frac{\overline{X} - \theta_0}{\sigma / \sqrt{n}}$ $Z = \frac{\overline{X} - \theta_0}{\overline{X} - \theta_0} \text{ if } \sigma \text{ unknow}$

Example 1

Will be tested if means of the heigth of chemistry class is 160 cm or different from that measure. If it take significance level 5% and sample random 100 students then it showed that means of height of the students is 163.5 cm with standard deviation 4.8 cm. Test the hypothesis!

Solution

Hypothesis: $H_0: \mu = 160$

 $H_1: \mu \neq 160$

Significance level :0.05 Critical Region

 H_0 rejected if $Z < -Z_{\frac{\alpha}{2}}$ or $Z > Z_{\frac{\alpha}{2}}$

 H_0 rejected if Z < -1.96 or Z > 1.96

iv. Calculation

$$Z = \frac{\overline{X} - \mu_0}{\sigma / \sqrt{n}} = \frac{163.5 - 160}{4.8 / \sqrt{100}} = 7.29$$

v. Conclution

Because Z=7.29>1.96 then H0 is rejected

p-Value

The *p-value* of a test is the probability of observing a test statistic at least as extreme as the one computed given that the null hypothesis is true.

In the case of our department store example, what is the **probability** of observing a sample mean **at least as extreme** as the one already observed (i.e. $\overline{\chi} = 178$), given that the null hypothesis (H0: $\mathcal{H} = 170$) is true?

$$P(\bar{x} > 178) = P\left(\frac{\bar{x} - \mu}{\sigma/\sqrt{n}} > \frac{178 - 170}{65/\sqrt{400}}\right) = P(Z > 2.46) = .0069$$

p-value

Table 8.6 Finding p-values

Case 1 H_a contains ">" "Right tail" *p*-value is the *area to the right of* z^* *p*-value = $P(z > z^*)$

Case 2 H_a contains "<" "Left tail" *p*-value is the *area to the left of z*^{*} The area of the left tail is the same as the area in the right tail bounded by the positive z^* , therefore

 $p\text{-value} = P(z < z^*) = P(z > |z^*|)$

Case 3 H_a contains " \neq " "Two-tailed"

p-value is the *total area of both tails p*-value = $P(z < -|z^*|) + P(z > |z^*|)$ Since both areas are equal, find the probability of one tail and double it. Thus, *p*-value = $2 \times P(z > |z^*|)$

Interpreting the p-value...

The smaller the p-value, the more statistical evidence exists to support the alternative hypothesis.

•If the p-value is less than 1%, there is **overwhelming evidence** that supports the alternative hypothesis.

- •If the p-value is between 1% and 5%, there is a *strong* evidence that supports the alternative hypothesis.
- •If the p-value is between 5% and 10% there is a *weak* evidence that supports the alternative hypothesis.

•If the p-value exceeds 10%, there is *no evidence* that supports the alternative hypothesis.

We observe a p-value of .0069, hence there is overwhelming evidence to support H_1 : μ > 170.

Interpreting the p-value...

Overwhelming Evidence (Highly Significant)

Interpreting the p-value...

Compare the p-value with the selected value of the significance level: α

If the p-value is less than α , we judge the p-value to be small enough to reject the null hypothesis.

If the p-value is greater than α , we do not reject the null hypothesis.

Since p-value = .0069 < = .05, we reject H_0 in favor of H_1

Summary of One- and Two-Tail Tests...

11.17

Large-Sample Test $H_0: \mu_1 - \mu_2 = 0$ vs $H_0: \mu_1 - \mu_2 > 0$

- **H**₀: μ_1 - μ_2 = 0 (No difference in population means
- H_A : μ_1 - μ_2 > 0 (Population Mean 1 > Pop Mean 2)

• T.S.: $z_{obs} = \frac{y_1 - y_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}$

• $R.R.: z_{obs} \geq z_{\alpha}$

- $P value : P(Z \ge z_{obs})$
- **Conclusion** Reject H_0 if test statistic falls in rejection region, or equivalently the *P*-value is $\leq \alpha$

Example - Botox for Cervical Dystonia

Patients - Individuals suffering from cervical dystonia

 Response - Tsui score of severity of cervical dystonia (higher scores are more severe) at week 8 of Tx

- Groups Placebo (Group 1) and Botox A (Group 2)
- Experimental (Sample) Results:

Example - Botox for Cervical Dystonia

Test whether Botox A produces lower mean Tsui scores than placebo ($\alpha = 0.05$)

i.
$$\alpha = 5\%$$

$$iii. z_{obs} = \frac{10.1 - 7.7}{\sqrt{\frac{(3.6)^2}{33} + \frac{(3.4)^2}{35}}} = \frac{2.4}{0.85} = 2.82$$

$$iv. z_{obs} \ge z_{\alpha} = z_{.05} = 1.645$$

$$v. P - val: P(Z \ge 2.82) = .0024$$

Conclusion: Botox A produces lower mean Tsui scores than placebo (since 2.82 > 1.645 and *P*-value < 0.05)

2-Sided Tests

- Many studies don't assume a direction with the difference μ_1 - μ_2
- $H_0: \mu_1 \mu_2 = 0$ $H_A: \mu_1 \mu_2 \neq 0$
 - Test statistic is the same as before
 - Decision Rule:
 - Conclude μ_1 - μ_2 > 0 if $z_{obs} \ge z_{\alpha/2}$ (α =0.05 \Rightarrow $z_{\alpha/2}$ =1.96)
 - Conclude μ_1 - μ_2 < 0 if $z_{obs} \ge -z_{\alpha/2}$ (α =0.05 \Rightarrow - $z_{\alpha/2}$ = 1.96)
 - Do not reject μ_1 - μ_2 = 0 if - $z_{\alpha/2} \le z_{obs} \le z_{\alpha/2}$
 - *P*-value: $2P(Z \ge |z_{obs}|)$

Power of a Test

Power - Probability a test rejects H_0 (depends on

- $\mu_1 \mu_2$) - H_0 True: Power = P(Type I error) = α
 - H_0 False: Power = 1-P(Type II error) = 1- β

Example:

• $H_0: \mu_1 - \mu_2 = 0$ $H_A: \mu_1 - \mu_2 > 0$

•
$$\sigma_1^2 = \sigma_2^2 = 25$$
 $n_1 = n_2 = 25$

• Decision Rule: Reject H_0 (at α =0.05 significance level) if:

$$z_{obs} = \frac{\overline{y_1 - y_2}}{\sqrt{\frac{\sigma_1^2}{n_1} + \frac{\sigma_2^2}{n_2}}} = \frac{\overline{y_1 - y_2}}{\sqrt{2}} \ge 1.645 \implies \overline{y_1 - y_2} \ge 2.326$$

