

BAB 3

Bagian 1 INTEGRAL TAK TENTU

REVIEW

KONSEP

- Misal fungsi y=F(x) mempunyai turunan dy/dx=f(x) dalam selang I maka F adalah persamaan differensial
- □ Sebuah fungsi y=F(x) disebut pemecahan persamaan dy/dx=f(x) jika F differensiabel di semua selang I
- □ Dikatakan juga F(x) adalah sebuah antiturunan dari f(x)

DEFINISI

 F disebut suatu anti turunan atau integral tak tentu dari f pada selang I Jika :

$$DF = f \in I$$

Integral tak tentu suatu fungsi adalah unik

CONTOH

$$x^2, x^2 + 2, x^2 - 5$$

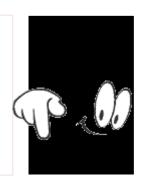
Merupakan integral tak tentu dari

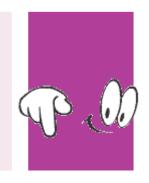
$$f(x) = 2x$$

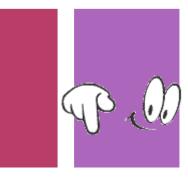
Jadi integral tak tentu dari f(x) adl:

$$F(x) = x^2 + K$$
, $K = Konstan$

OTHER EXAMPLE


 $F(x) = 3x^2 + 4x + 1 \Rightarrow F'(x) = 6x + 4$


Jika f(x) = 6x + 4 maka f disebut sebagai turunan dari F dan F adalah suatu anti turunan dari f


Jika $G(x) = 3x^2 + 4x - 7$ maka G disebut juga sebagai suatu anti turunan dari f sebab G'(x) = 6x + 4

REMEMBER:

$$DF = f$$

Secara Umum ;

$$y = F(x) + C$$
, C konstanta sebarang

$$\frac{dF(x)}{dx} = f(x)$$

$$\int f(x) dx = F(x) + C, \quad C = \text{konstantasebarang}$$

NOTASI LEIBNIZ

- Himpunan dari semua anti turunan f(x) disebut integral tak tentu dari f terhadap x dan dinotasikan dengan $\int f(x) dx$
- Rumus F(x) + C memberikan semua anti turunan f dan dinotasikan $\int f(x) \ dx = F(x) + C$

TEOREMA A: ATURAN PANGKAT

 Jika r adalah sebarang bilangan rasional kecuali (-1), maka :

$$\int x^r \, dx = \frac{1}{r+1} \, x^{r+1} + C$$

- Jika r = 0 ?
- Anti turunan sering disebut dengan Integral Tak Tentu
- Dalam notasi $\int f(x) dx$, \int disebut tanda integral, sedangkan f(x) disebut integran

TEOREMA B KELINEARAN INTEGRAL TAK TENTU

Andaikan f dan g mempunyai anti turunan (integral tak tentu) dan k adalah konstanta, maka

1.
$$\int k f(x) dx = k \int f(x) dx$$

2.
$$\int [f(x) + g(x)] dx = \int f(x) dx + \int g(x) dx$$

3.
$$\int [f(x) - g(x)] dx = \int f(x) dx - \int g(x) dx$$

TEOREMA C ATURAN PANGKAT YANG DIPERUMUM

Andaikan g suatu fungsi yang dapat didiferensialkan dan r bil rasional bukan (-1), maka:

$$\left| \int [g(x)]^r g'(x) \, dx = \frac{1}{r+1} [g(x)]^{r+1} + C \right|$$

Contoh: Carilah integral dari f(x) sbb.

$$\int (x^4 + 3x)^{30} (4x^3 + 3) \, dx$$

$$\int \sin^{30} x \cos x \, dx$$

$$\left| \int u^r \, du = \frac{1}{r+1} u^{r+1} + C, \ r \neq 1 \right|$$

LATIHAN CARI ANTI TURUNAN YANG UMUM

1.
$$f(x) = 5x^4 + \pi$$

2.
$$f(x) = 3x^2 + 10x - 7$$

$$3. f(x) = x^2 (20x^7 - 7x^4 + 6)$$

$$4. f(x) = \frac{4x^6 + 3x^5 - 8}{x^5}$$

CARI INTEGRAL TAK TENTU

$$5.\int \left(x^3 + \sqrt{x}\right) dx$$

$$6. \int y^2 (y^2 - 3) dy$$

$$7.\int \frac{x^3 - 3x^2 + 1}{\sqrt{x}} dx$$

8.
$$\int (5x^2 + 1)\sqrt{5x^3 + 3x - 2} dx$$

$$9.\int \frac{3y}{\sqrt{2y^2 + 5}} dy$$