
Chapter 1
Point Estimation part 1
Methods of Estimation



Qualities of Estimator  determined the “best” way

to estimate a population parameter.

How? unbiasedness, consistency and relative

efficiency:

An unbiased estimator of a population parameter 

is an estimator whose expected value is equal to 
that parameter.

An unbiased estimator is said to be consistent if 

the difference between the estimator and the 
parameter grows smaller as the sample size grows 
larger.

If there are two unbiased estimators of a 

parameter, the one whose variance is smaller is 
said to be relatively efficient.
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Mostly methods on Point estimation :
Moments
Maximum Likelihood
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 The moment about the origin were
defined :
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1. Method of Moment

Definition 9.2.1 pg 291
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In other words



Example 9.2.1

A r.V sample from a distribution with two 
unknown parameters the mean  and the 
variance       then find 2

2ˆ   and   ˆ 



Example 9.2.3

A r.V sample from an exponential
distribution, then estimate the
probability
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2. Method of Maximum Likelihood

Definition 9.2.2
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Definition 9.2.3
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Th. Invariance Property
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Example
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