KD4_2

RASIO ODDS & UJI MANTEL HAENSZEL

Pengertian OR (Odds Ratio)

- Biasanya digunakan pada ilmu epidemiologi
 - →Ilmu yang mempelajari distribusi dan determinan penyakit pada populasi manusia
 - → tujuan: mengetahui kekuatan pengaruh variabel paparan (exposure) terhadap resiko penyakit (outcome)
- Rasio Odds merupakan besaran yang menyatakan kekuatan hubungan exposure-outcome

EXPOSURE:

		Exposea	Non-Expose
OUTCOME:	Cases:	а	b

Non-cases:

Contoh 1

Sebagai contoh, misalkan penelitian yaitu: "Pengaruh game terhadap penyakit rabun jauh (RJ) pada anak laki-laki usia di Atas 10 Tahun".

Odds Ratio yang dimaksud dalam contoh di atas adalah: seberapa besarkah pengaruh game terhadap Penyakit RJ pada Anak Laki-laki Usia Di Atas 10 Tahun. Maka jawabannya bisa jadi 2 kali lipat, 3 kali lipat atau 5,5 kali lipat. Nilai kali lipat inilah yang disebut sebagai "odds ratio" atau rasio odds atau OR.

Contoh 2

► Tabel berikit berisi daftar pasien penderita kanker yang terdiri dari perokok dan nonperokok dan berasal dari 3 kota di Cina (Liu. 1992).

	Zhengzhou		Taiyuan	Nanchang
Cancer Diagnosis:	yes	no total	yes no total	yes no total
Smoker Non-Smoker	182 72		60 99 159 11 43 54	104 89 193 21 36 57
Total	254	254 508	71 142 213	125 250

Akan dilakukan Uji MH untuk mengetahui apakah proporsi insiden kanker untuk perokok/ bukan untuk kota yang berbeda sama atau tidak?

	Z	hengzhou		Taiyuan	N	Nanchang
Cancer Diagnosis:	yes	no total	yes	no total	yes	no total
Smoker Non-Smoker	182 72	156 338 98 170	60 11	99 159 43 54	104 21	89 193 36 57
Total	254	254 508	71	142 213	125	125 250

► Penentuan Odd ratio

Diagnosis	Zhengzhou		Taiyuan		Nanchang		Total	
Kanker	Ya	Tdk	Ya	Tdk	Ya	Tdk	Ya	Tdk
Perokok	182	156	60	99	104	89	346	344
NonPerokok	72	98	11	43	21	36	104	177
							1,711818	

Langkah-langkah

i. Hipotesis

$$H_0: p_{1i} = p_{2i}$$

 $H_1: p_{1i} \neq p_{2i}$, untuk suatu i(i = 1,2,3)

Dengan p1i adalah proporsi insiden kanker antara perokok pada kota ke-i P2i merupakan proporsi insiden kanker antara nonperokok pada kota ke-i

ii. Dipilih tingkat signifikansi α =0.1

	Z	hengzhou		Taiyuan	ľ	Nanchang
Cancer Diagnosis:	yes	no to	tal yes	no total	yes	no total
Smoker Non-Smoker	182 72		38 60 70 11	99 159 43 54	104 21	89 193 36 57
Total	254	254 5	08 71	142 213	125	125 250

$$T = \frac{\sum_{i} x_{i} - \sum_{i} \frac{r_{i}c_{i}}{n_{i}}}{\sqrt{\sum_{i} \frac{r_{i}c_{i}(n_{i} - r_{i})(n_{i} - c_{i})}{n_{i}^{2}(n_{i} - 1)}}}$$

$$T = \frac{\sum_{i} x_{i} - \sum_{i} \frac{r_{i}c_{i}}{n_{i}}}{\sqrt{\sum_{i} \frac{r_{i}c_{i}(n_{i} - r_{i})(n_{i} - c_{i})}{n_{i}^{2}(n_{i} - 1)}}}$$

$$\sum_{i} x_{i} = 182 + 60 + 104 = 346 \qquad \sum_{i} \frac{r_{i}c_{i}}{n_{i}} = \frac{338.254}{508} + \frac{159.71}{213} + \frac{193.125}{250} = 318,5$$

$$\sum_{i} \frac{r_{i}c_{i}(n_{i} - r_{i})(n_{i} - c_{i})}{n_{i}^{2}(n_{i} - 1)}$$

$$= \frac{338.254(508 - 338)(508 - 254)}{508^{2}(508 - 1)} + \frac{159.71(213 - 159)(213 - 71)}{213^{2}(213 - 1)}$$

$$+ \frac{193.125(250 - 193)(250 - 125)}{250^{2}(250 - 1)} = 48,37851$$

$$T > p \text{ maka HO}$$

$$d.k.l \text{ proporsion pada ketigal for the distance of the properties of the properties$$

$$T = \frac{\sum_{i} x_{i} - \sum_{i} \frac{r_{i}c_{i}}{n_{i}}}{\sqrt{\sum_{i} \frac{r_{i}c_{i}(n_{i} - r_{i})(n_{i} - c_{i})}{n_{i}^{2}(n_{i} - 1)}}}$$
$$= \frac{346 - 318,5}{\sqrt{48,37851}} = 3,95$$

Nilai p-val (dengan Matlab) p = 7.6944e-005

T>p maka H0 ditolak d.k.l proporsi penderita kanker pada ketiga kota tidak sama

Contoh 3 dengan SPSS

Ingin diketahui proporsi anak usia di atas 10th yang kecanduan game dengan kejadian rabun jauh yang diderita. Tabel kategorik seperti berikut.

game * RJ Crosstabulation

Count

		R		
		Tidak	Ya	Total
game	Tidak	10	2	12
	Ya	2	6	8
Total		12	8	20

Mantel-Haenszel Common Odds Ratio Estimate

Estimate			15,000
In(Estimate)			2,708
Std. Error of In(Estimate)			1,125
Asymp. Sig. (2-sided)			,016
Asymp. 95% Confidence Interval	Common Odds Ratio	Lower Bound	1,652
		Upper Bound	136,172
	In(Common Odds Ratio)	Lower Bound	,502
		Upper Bound	4,914

The Mantel-Haenszel common odds ratio estimate is asymptotically normally distributed under the common odds ratio of 1,000 assumption. So is the natural log of the estimate.

Nilai Odds ratio ditunjukkan dengan nilai "Estimate" yaitu 15,000. Artinya: anak usia di atas 10 tahun kecanduan game yang mengalami RJ lebih beresiko 15 kali lipat dari pada yang tidak kecanduan game

Nilai Asymp. Sig (2-Sided) menunjukkan nilai p value atau signifikansi nilai odds ratio. Apabila Asymp. < 0,05 maka pada taraf kepercayaan 95%, odds ratio sebesar 15 signifikan atau bermakna, yang berarti dapat mewakili keseluruhan populasi.

Nilai Common Odds Ratio Lower Bound dan Upper Bound menunjukkan batas atas dan batas bawah odds ratio, yang artinya: setidaknya anak usia di atas 10 th yang kecanduan game sekurang-kurangnya lebih beresiko sebesar 1,652 kali lipat dapat mengalami RJ dan paling besar lebih beresiko sebesar 136,172 kali lipat dapat mengalami RJ