

Appendix I: Spearman's Rho (ρ) Table

How to Use the Spearman's Rho (ρ) Table

First, determine whether you are conducting a one-tailed or a two-tailed test. Next, identify the level of significance for your test. These two decisions determine the column of the table you will be using. Next, find your n (sample size) in the left-hand column. This determines the row of the table you will use. The critical value for your test is found at the intersection of the column and row you have identified. If your calculated value of ρ equals or exceeds this critical value, your result is statistically significant at the level you have chosen.

Table I.1 Critical Values for Spearman's Rho (ρ)

	One-tai			
	.05	.025	.01	.005
	Two-tai	led level of significat	nce (<i>p</i>)	
$\stackrel{n}{\downarrow}$.10	.05	.02	.01
4	1.000	—	—	—
5	.900	1.000	1.000	_
6	.829	.886	.943	1.000
7	.714	.786	.893	.929
8	.643	.738	.833	.881
9	.600	.700	.783	.833
10	.564	.648	.745	.794
11	.536	.618	.709	.755

(Continued)

	One-tai	led level of significar	nce (<i>p</i>)	
	.05	.025	.01	.005
	Two-tailed level of significance (p)			
$\stackrel{n}{\downarrow}$.10	.05	.02	.01
12	.503	.587	.671	.727
13	.484	.560	.648	.703
14	.464	.538	.622	.675
15	.443	.521	.604	.654
16	.429	.503	.582	.635
17	.414	.485	.566	.615
18	.401	.472	.550	.600
19	.391	.460	.535	.584
20	.380	.447	.520	.570
21	.370	.435	.508	.556
22	.361	.425	.496	.544
23	.353	.415	.486	.532
24	.344	.406	.476	.521
25	.337	.398	.466	.511
26	.331	.390	.457	.501
27	.324	.382	.448	.491
28	.317	.375	.440	.483
29	.312	.368	.433	.475
30	.306	.362	.425	.467
35	.283	.335	.394	.433
40	.264	.313	.368	.405
45	.248	.294	.347	.382
50	.235	.279	.329	.363
60	.214	.255	.300	.331
70	.190	.235	.278	.307
80	.185	.220	.260	.287
90	.174	.207	.245	.271
100	.165	.197	.233	.257

Table I.1 Critical Values of Spearman's rho (

Source: http://fsjes.usmba.ac.ma/cours/tables%20statx.pdf.