Carboxylic Acids

Nomenclature of Carboxylic Acids

Formula	Common Name	Source	IUPAC Name	Melting Point	Boiling Point
HCO ₂ H	formic acid	ants (L. formica)	methanoic acid	8.4 °C	101 °C
CH ₃ CO ₂ H	acetic acid	vinegar (L. acetum)	ethanoic acid	16.6 °C	118 °C
CH ₃ CH ₂ CO ₂ H	propionic acid	milk (Gk. protus prion)	propanoic acid	-20.8 °C	141 °C
CH ₃ (CH ₂) ₂ CO ₂ H	butyric acid	butter (L. butyrum)	butanoic acid	-5.5 °C	164 ℃
CH ₃ (CH ₂) ₃ CO ₂ H	valeric acid	valerian root	pentanoic acid	-34.5 °C	186 ℃
CH ₃ (CH ₂) ₄ CO ₂ H	caproic acid	goats (L. caper)	hexanoic acid	-4.0 °C	205 °C
CH ₃ (CH ₂) ₅ CO ₂ H	enanthic acid	vines (Gk. oenanthe)	heptanoic acid	-7.5 °C	223 °C
CH ₃ (CH ₂) ₆ CO ₂ H	caprylic acid	goats (L. caper)	octanoic acid	16.3 ℃	239 °C
CH ₃ (CH ₂) ₇ CO ₂ H	pelargonic acid	pelargonium (an herb)	nonanoic acid	12.0 °C	253 ℃
CH ₃ (CH ₂) ₈ CO ₂ H	capric acid	goats (L. caper)	decanoic acid	31.0 °C	219 °C

2-ethyl-4,4-dimethylpentanoic acid

Br H₃C Y CH₃ 2-bromo-3-methylbutanoic acid α-bromoisovaleric acid

cis-1,3-cyclohexanedicarboxylic acid

Carboxylic Acid Natural Products

Saturated					
Formula	Common Name	Melting Point			
CH ₃ (CH ₂) ₁₀ CO ₂ H	lauric acid	45 °C			
CH ₃ (CH ₂) ₁₂ CO ₂ H	myristic acid	55 °C			
CH ₃ (CH ₂) ₁₄ CO ₂ H	palmitic acid	63 °C			
CH ₃ (CH ₂) ₁₆ CO ₂ H	stearic acid	69 °C			
CH ₃ (CH ₂) ₁₈ CO ₂ H	arachidic acid	76 °C			

Formula	Common Name	Melting Point
CH ₃ (CH ₂) ₅ CH=CH(CH ₂) ₇ CO ₂ H	palmitoleic acid	0 °C
CH ₃ (CH ₂) ₇ CH=CH(CH ₂) ₇ CO ₂ H	oleic acid	13 °C
CH ₃ (CH ₂) ₄ CH=CHCH ₂ CH=CH(CH ₂) ₇ CO ₂ H	linoleic acid	-5 °C
CH ₃ CH ₂ CH=CHCH ₂ CH=CHCH ₂ CH=CH(CH ₂) ₇ CO ₂ H	linolenic acid	-11 °C
$CH_{3}(CH_{2})_{4}(CH=CHCH_{2})_{4}(CH_{2})_{2}CO_{2}H$	arachidonic acid	-49 °C

Physical Properties of Carboxylic Acids

Physical Properties of Some Organic Compounds

Formula	IUPAC Name	Molecular Weight	Boiling Point	Water Solubility
CH ₃ (CH ₂) ₂ CO ₂ H	butanoic acid	88	164 °C	very soluble
CH ₃ (CH ₂) ₄ OH	1-pentanol	88	138 ℃	slightly soluble
CH ₃ (CH ₂) ₃ CHO	pentanal	86	103 ℃	slightly soluble
CH ₃ CO ₂ C ₂ H ₅	ethyl ethanoate	88	77 ℃	moderately soluble

CH ₃ CH ₂ CO ₂ CH ₃	H ₃ methyl propanoate		80 °C	slightly soluble
CH ₃ (CH ₂) ₂ CONH ₂	butanamide	87	216 °C	soluble
CH ₃ CON(CH ₃) ₂	N,N- dimethylethanamide	87	165 ℃	very soluble
CH ₃ (CH ₂) ₄ NH ₂	1-aminobutane	87	103 ℃	very soluble
CH ₃ (CH ₂) ₃ CN	pentanenitrile	83	140 °C	slightly soluble
CH ₃ (CH ₂) ₄ CH ₃	hexane	86	69 °C	insoluble

Hydrogen bond between the fairly positive hydrogen atom and a lone pair on the fairly negative oxygen atom.

Acidity of Carboxylic Acids

Compound	pK _a	Compound	pK _a
HCO ₂ H	3.75	CH ₃ CH ₂ CH ₂ CO ₂ H	4.82
CH ₃ CO ₂ H	4.74	ClCH ₂ CH ₂ CH ₂ CO ₂ H	4.53
FCH ₂ CO ₂ H	2.65	CH ₃ CHClCH ₂ CO ₂ H	4.05
ClCH ₂ CO ₂ H	2.85	CH ₃ CH ₂ CHClCO ₂ H	2.89
BrCH ₂ CO ₂ H	2.90	C ₆ H ₅ CO ₂ H	4.20
ICH ₂ CO ₂ H	3.10	p-O ₂ NC ₆ H ₄ CO ₂ H	3.45
Cl ₃ CCO ₂ H	0.77	p-CH ₃ OC ₆ H ₄ CO ₂ H	4.45

pK_a 3.75 4.74

2.65

0.0

Reactions of Carboxylic Acids

• Nucleophiles that are also strong bases react with carboxylic acids by removing a proton first, before any nucleophilic substitution reaction can take place.

Nucleophilic acyl substitution reactions of carboxylic acids

- Treatment of a carboxylic acid with thionyl chloride (SOCl₂) affords an acid chloride.
- This is possible because thionyl chloride converts the OH group of the acid into a better leaving group, and because it provides the nucleophile (CI⁻) to displace the leaving group.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mechanism 22.5 Conversion of Carboxylic Acids to Acid Chlorides

Steps [1] and [2] Conversion of the OH group into a good leaving group

 Reaction of the OH group with SOCl₂ forms an intermediate that loses a proton in Step [2]. This two-step process converts the OH group into OSOCl, a good leaving group.

Steps [3] and [4] Substitution of the leaving group by Cl

 Nucleophilic attack by Cl⁻ and loss of the leaving group (SO₂ + Cl⁻) forms the acid chloride.

- Although carboxylic acids cannot readily be converted into anhydrides, dicarboxylic acids can be converted to cyclic anhydrides by heating to high temperatures.
- This is a dehydration reaction because a water molecule is lost from the diacid.

ESTERIFIKASI ASAM KARBOKSILAT

- Esterification of a carboxylic acid occurs in the presence of acid but not in the presence of base.
- Base removes a proton from the carboxylic acid, forming the carboxylate anion, which does not react with an electron-rich nucleophile.

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Mechanism 22.6 Fischer Esterification—Acid-Catalyzed Conversion of Carboxylic Acids to Esters

Part [1] Addition of the nucleophile R'OH

- Protonation in Step [1] makes the carbonyl group more electrophilic.
- Nucleophilic addition of R'OH forms a tetrahedral intermediate, and loss of a proton forms the neutral addition product (Steps [2]–[3]).

Part [2] Elimination of the leaving group H₂O

- Protonation of an OH group in Step [4] forms a good leaving group that is eliminated in Step [5].
- Loss of a proton in Step [6] forms the ester.

• Intramolecular esterification of γ - and δ -hydroxyl carboxylic acids forms five- and six-membered lactones.

- Carboxylic acids cannot be converted into amides by reaction with NH₃ or an amine because amines are bases, and undergo an acid-base reaction to form an ammonium salt before nucleophilic substitution occurs.
- However, heating the ammonium salt at high temperature (>100°C) dehydrates the resulting ammonium salt of the carboxylate anion to form an amide, although the yield can be low.

- The overall conversion of RCOOH to RCONH₂ requires two steps:
 - [1] Acid-base reaction of RCOOH with NH₃ to form an ammonium salt.
 - [2] Dehydration at high temperature (>100°C).

 A carboxylic acid and an amine readily react to form an amide in the presence of an additional reagent, dicyclohexylcarbodimide (DCC), which is converted to the by-product dicyclohexylurea in the course of the reaction.

- DCC is a dehydrating agent.
- The dicyclohexylurea by-product is formed by adding the elements of H₂O to DCC.
- DCC promotes amide formation by converting the carboxy group OH group into a better leaving group.

Carboxylic Acid Derivatives

Name	Structure	Found or Used In:
Carboxylic Acid	о П в-с-он	Vinegar, Cream of Tartar
Ester	R-C-OR	Fats, Cell Membranes
Amide	R-C-NHR	Nylon, Proteins
Acyl Chloride	R-C-CI	Synthesis of Carboxyl Derivatives
Acid Anhydride	0 0 II II R-C-O-C-R	Synthesis of Carboxyl Derivatives

Related Carbonyl Derivatives

Related Carbonyl Derivatives

acyl halide	anhydride	ester	amide	nitrile
R –C X X = F, Cl, Br or I		R-C ⁰ 0-R'	R = C' NR' ₂ R' = H or alkyl	R−CΞN
C ₂ H ₅ C ⁰ Cl	H₃C-C	0 H ₃ C—Ć О-С ₂ H ₅	H-C NH2	H3C—C∃N
propanoyl chloride	acetic anhydride	ethyl acetate	formamide	acetonitrile