
Chapter 6

SQL-99: Schema
Definition, Basic
Constraints, and

Queries (from E&N and
my editing)

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 2

Language
 Set operations to define and

manipulate structure and constraints of
database.

 All related to relational model
 Formal Language Relational Algebra, →

Relational Calculus
 SQL success in bussiness of DBMS →

tool

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 3

Data Definition,
Constraints, and Schema

Changes
 Used to CREATE, DROP, and ALTER the

descriptions of the tables (relations) of
a database

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 4

History
 SQL stand for Structured Query Language
 SQL is based on the Relational Tuple Calculus
 Evolved from SEQUEL: Structured English QUEry Language - part

of IBM’s SYSTEM R, 1974
 SQL2 Supported by

 ORACLE, SYBASE, INFORMIX,
 IBM DB2, SQL SERVER, …
 MS Access, MySQL, …

 SQL2 also called SQL/92 is evolved from SQL/86, SQL/89, all were
ANSI & ISO standard

 Currently Working on SQL3/SQL-99 with OO Extensions
 Now – SQL is standard language for commercial relational DBMS

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 5

SQL Components
 Data Definition Language (DDL)

 For External and Conceptual Schemas
 Views - DDL for External Schemas

 Data Manipulation Language (DML)
 Interactive DML Against External and Conceptual Schemas
 Embedded DML in Host PLs (EQL, JDBC, etc.)

 Others
 Integrity (Allowable Values/Referential)
 Catalog and Dictionary Facilities
 Transaction Control (Long-Duration and Batch)
 Authorization (Who can Do What When)

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 6

DDL & DML
 Data Definition Language (DDL)

 Defining the Relational Schema - Relations, Attributes, Domains
- The Meta-Data
CREATE TABLE Student:

Name(CHAR(30)),SSN(CHAR(9)),GPA(FLOAT(2))

CREATE TABLE Courses:

Course#(CHAR(6)), Title(CHAR(20)), Descrip(CHAR(100)),
Pcourse#(CHAR(6))

 Data Manipulation Language (DML)
 Defining the Queries Against the Schema

SELECT Name, SSN

From Student

Where GPA > 3.00

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 7

Look .. .
 From Relational Model

CREATE TABLE Student:
Name(CHAR(30)),SSN(CHAR(9)),GPA(FLOAT(2))
CREATE TABLE Courses:
Course#(CHAR(6)), Title(CHAR(20)), Descrip(CHAR(100)),
Pcourse#(CHAR(6))

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 8

DDL: Data Definition
Language

 A Pre-Defined set of Primitive Types
 Numeric
 Character-string
 Bit-string
 Additional Types

 Defining Domains
 Defining Schema
 Defining Tables
 Defining Views

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 9

DDL Primitive
 Numeric

 INTEGER (or INT), SMALLINT
 REAL, DOUBLE PRECISION
 FLOAT(N) Floating Point with at Least N Digits
 DECIMAL(P,D) (DEC(P,D) or NUMERIC(P,D)) have P

Total Digits with D to Right of Decimal
 Note that INTs and REALs are Machine

Dependent (Based on Hardware/OS Platform)

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 10

 Character-String
 CHAR(N) or CHARACTER(N) – Fixed
 VARCHAR(N), CHAR VARYING(N), or

CHARACTER VARYING(N)
Variable with at Most N Characters

 Bit-Strings
 BIT(N) Fixed

 VARBIT(N) or BIT VARYING(N)
 Variable with at Most N Bits

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 11

Additional . . .
 Has DATE, TIME, and TIMESTAMP data types

 DATE:
Made up of year-month-day in the format yyyy-mm-dd

 TIME:
Made up of hour:minute:second in the format hh:mm:ss

 TIME(i):
Made up of hour:minute:second plus i additional digits
specifying fractions of a second

format is hh:mm:ss:ii...i

 TIMESTAMP:
Has both DATE and TIME components

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 12

Additional . . .
 INTERVAL:

 Specifies a relative value rather than an
absolute value

 Can be DAY/TIME intervals or
YEAR/MONTH intervals

 Can be positive or negative when added to
or subtracted from an absolute value, the
result is an absolute value

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 13

DDL Domains
 Domains are Similar in Concepts to

Programming Language Type Definitions
 A Domain can be Defined as Follows:

 CREATE DOMAIN CITY CHAR(15) DEFAULT ‘<Storrs>’;
 CREATE DOMAIN SSNFORMAT CHAR(9);

 Advantage of Using Domains
 Changing a Domain Definition in One Place

Changes it Consistently Everywhere it is Used
 Default Values Can Be Defined for Domains
 Constraints Can Be Defined for Domains

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 14

 A Domain is Dropped As Follows:
 DROP DOMAIN CITY RESTRICT;
 DROP DOMAIN SSNFORMAT CASCADE;

 Restrict:
 Drop Operation Fails If the Domain is Used in

Column Definitions
 Cascade:

 Drop Operation Causes Columns to be
Defined Directly on the Underlying Data Type

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 15

SQL - Relational Model
 Term Used

SQL Formal Relational Model
Table Relation
Row Tuple
Column Attribute

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 16

SQL Schema
 SQL Schema is identified by schema name

and include authorization identifier.
 Schema elements: tables, attributes

names, constraints, views, domains and
other construct (such as authorization
grant) that describe the schema

 System Administrator or DBA had privilege
to create schemas

 Features that added to SQL2 & SQL-99

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 17

Creating/ Drop Schema
 Creating a Schema:

CREATE SCHEMA MY_COMPANY AUTHORIZATION Dww;
 Schema MY_COMPANY bas Been Created and is Owner by

the User “Dww”
 Tables can now be Created and Added to Schema

 Dropping a Schema:
DROP SCHEMA MY_COMPANY RESTRICT;
DROP SCHEMA MY_COMPANY CASCADE;

 Restrict:
 Drop Operation Fails If Schema is Not Empty

 Cascade:
 Drop Operation Removes Everything in the Schema

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 18

CREATE TABLE

 Specifies a new base relation by giving it a
name, and specifying each of its attributes
and their data types (INTEGER, FLOAT,
DECIMAL(i,j), CHAR(n), VARCHAR(n))

 A constraint NOT NULL may be specified on
an attribute
CREATE TABLE DEPARTMENT

(DNAME VARCHAR(10) NOT NULL,
DNUMBER INTEGER NOT NULL,
MGRSSN CHAR(9),
MGRSTARTDATE CHAR(9)) ;

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 19

CREATE TABLE

 In SQL2, can use the CREATE TABLE command for
specifying the primary key attributes, secondary keys,
and referential integrity constraints (foreign keys).

 Key attributes can be specified via the PRIMARY KEY
and UNIQUE phrases

CREATE TABLE DEPT
(DNAME VARCHAR(10) NOT NULL,

DNUMBER INTEGER NOT NULL,
MGRSSN CHAR(9),
MGRSTARTDATE CHAR(9),
PRIMARY KEY (DNUMBER),
UNIQUE (DNAME),
FOREIGN KEY (MGRSSN) REFERENCES EMP);

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 20

DROP TABLE

 Used to remove a relation (base table) and
its definition

 The relation can no longer be used in
queries, updates, or any other commands
since its description no longer exists

 Example:

DROP TABLE DEPENDENT;

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 21

ALTER TABLE

 Used to add an attribute to one of the base relations
 The new attribute will have NULLs in all the tuples of the

relation right after the command is executed; hence, the
NOT NULL constraint is not allowed for such an attribute

 Example:

ALTER TABLE EMPLOYEE ADD JOB
VARCHAR(12);

 The database users must still enter a value for the new
attribute JOB for each EMPLOYEE tuple. This can be
done using the UPDATE command.

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 22

REFERENTIAL INTEGRITY
OPTIONS

 We can specify RESTRICT, CASCADE, SET NULL or SET
DEFAULT on referential integrity constraints (foreign keys)

CREATE TABLE DEPT
 (DNAME VARCHAR(10) NOT NULL,

DNUMBER INTEGER NOT NULL,
MGRSSN CHAR(9),
MGRSTARTDATE CHAR(9),
PRIMARY KEY (DNUMBER),
UNIQUE (DNAME),
FOREIGN KEY (MGRSSN) REFERENCES EMP

ON DELETE SET DEFAULT ON UPDATE CASCADE);

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 23

REFERENTIAL INTEGRITY
OPTIONS (continued)

CREATE TABLE EMP
(ENAME VARCHAR(30) NOT NULL,

ESSN CHAR(9),
BDATE DATE,
DNO INTEGER DEFAULT 1,
SUPERSSN CHAR(9),
PRIMARY KEY (ESSN),
FOREIGN KEY (DNO) REFERENCES DEPT

 ON DELETE SET DEFAULT ON UPDATE
CASCADE,

FOREIGN KEY (SUPERSSN) REFERENCES EMP
 ON DELETE SET NULL ON UPDATE CASCADE);

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 24

Implications of Drop/
Alter Table

 Possible Issues When you Drop or Alter a Table?
 Views are Impacted - Portions (All?) of External Schema

w.r.t. User Applications May No Longer be Available
 User Applications May No Longer Execute
 Applications that Utilize JDBC/ODBC to Access

Conceptual Schema Directly May No Longer Work
 Adding Columns via Alter Leads to …

 Need to Update all Nulls with Actual Values
 What if DB is Large?
 Potential to Introduce Data Inconsistencies

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 25

Ex: Library Case :)
 Make DDL

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 26

 CREATE DATABASE LIBRARY;
 CREATE TABLE ANGGOTA (

Id_user char(7),Id_person varchar(20),Name
varchar(50),Place_ofB varchar(40), Bdate date,Email
varchar(50),Sex char(1),Address varchar(100),
Mail_address varchar(100), Mobilephone
varchar(15), Homephone varchar(15), Occupation
varchar(50), Institution varchar(50), Officephone
varchar(15), Registered_date date,

PRIMARY KEY Id_user);

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 27

Retrieval Queries in SQL

 SQL has one basic statement for retrieving information from a
database; the SELECT statement

 Important distinction between SQL and the formal relational
model; SQL allows a table (relation) to have two or more tuples
that are identical in all their attribute values

 Hence, an SQL relation (table) is a multi-set (sometimes called a
bag) of tuples; it is not a set of tuples

 SQL relations can be constrained to be sets by specifying
PRIMARY KEY or UNIQUE attributes, or by using the DISTINCT
option in a query

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 28

Retrieval Queries in SQL
(cont.)

 Basic form of the SQL SELECT statement is called a
mapping or a SELECT-FROM-WHERE block

SELECT <attribute list>
FROM <table list>
WHERE <condition>

– <attribute list> is a list of attribute names whose values are
to be retrieved by the query

– <table list> is a list of the relation names required to process
the query

– <condition> is a conditional (Boolean) expression that
identifies the tuples to be retrieved by the query

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 29

Relational Database Schema

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 30

Populated
Database

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 31

Simple SQL Queries

 Basic SQL queries correspond to using the SELECT, PROJECT, and
JOIN operations of the relational algebra

 All subsequent examples use the COMPANY database
 Example of a simple query on one relation
 Query 0: Retrieve the birthdate and address of the employee

whose name is 'John B. Smith'.

Q0: SELECT BDATE, ADDRESS
FROM EMPLOYEE
WHERE FNAME='John' AND MINIT='B’
 AND LNAME='Smith’

– Similar to a SELECT-PROJECT pair of relational algebra operations;
the SELECT-clause specifies the projection attributes and the WHERE-
clause specifies the selection condition

– However, the result of the query may contain duplicate tuples

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 32

Simple SQL Queries
(cont.)

 Query 1: Retrieve the name and address of all employees who work
for the 'Research' department.

Q1: SELECT FNAME, MINIT,LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND DNUMBER=DNO

– Similar to a SELECT-PROJECT-JOIN sequence of relational algebra
operations

– (DNAME='Research') is a selection condition (corresponds to a
SELECT operation in relational algebra)

– (DNUMBER=DNO) is a join condition (corresponds to a JOIN
operation in relational algebra)

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 33

Simple SQL Queries
(cont.)

 Query 2: For every project located in 'Stafford', list the project number,
the controlling department number, and the department manager's
last name, address, and birthdate.

Q2: SELECT PNUMBER, DNUM, LNAME, BDATE,
ADDRESS

FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND MGRSSN=SSN
AND PLOCATION='Stafford'

– In Q2, there are two join conditions
– The join condition DNUM=DNUMBER relates a project to its

controlling department
– The join condition MGRSSN=SSN relates the controlling

department to the employee who manages that department

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 34

Aliases, * and DISTINCT,
Empty WHERE-clause

 In SQL, we can use the same name for two (or more)
attributes as long as the attributes are in different
relations
A query that refers to two or more attributes with
the same name must qualify the attribute name with
the relation name by prefixing the relation name to
the attribute name

Example:

 EMPLOYEE.LNAME, DEPARTMENT.DNAME

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 35

ALIASES

 Some queries need to refer to the same relation twice
 In this case, aliases are given to the relation name
 Query 8: For each employee, retrieve the employee's name, and

the name of his or her immediate supervisor.

Q8: SELECT E.FNAME, E.LNAME, S.FNAME,
S.LNAME

FROM EMPLOYEE E S
WHERE E.SUPERSSN=S.SSN

– In Q8, the alternate relation names E and S are called aliases or
tuple variables for the EMPLOYEE relation

– We can think of E and S as two different copies of EMPLOYEE; E
represents employees in role of supervisees and S represents
employees in role of supervisors

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 36

ALIASES (cont.)

– Aliasing can also be used in any SQL query for convenience
Can also use the AS keyword to specify aliases

Q8: SELECT E.FNAME, E.LNAME, S.FNAME,
S.LNAME

FROM EMPLOYEE AS E, EMPLOYEE AS S
WHERE E.SUPERSSN=S.SSN

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 37

UNSPECIFIED
WHERE-clause

 A missing WHERE-clause indicates no condition; hence,
all tuples of the relations in the FROM-clause are
selected

 This is equivalent to the condition WHERE TRUE
 Query 9: Retrieve the SSN values for all employees.

Q9: SELECT SSN
FROM EMPLOYEE

 If more than one relation is specified in the FROM-
clause and there is no join condition, then the
CARTESIAN PRODUCT of tuples is selected

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 38

UNSPECIFIED
WHERE-clause (cont.)

 Example:

Q10: SELECT SSN, DNAME
FROM EMPLOYEE, DEPARTMENT

– It is extremely important not to overlook specifying any
selection and join conditions in the WHERE-clause; otherwise,
incorrect and very large relations may result

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 39

USE OF *

 To retrieve all the attribute values of the selected tuples,
a * is used, which stands for all the attributes
Examples:

Q1C: SELECT *
FROM EMPLOYEE
WHERE DNO=5

Q1D: SELECT *
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND

DNO=DNUMBER

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 40

USE OF DISTINCT

 SQL does not treat a relation as a set; duplicate tuples
can appear

 To eliminate duplicate tuples in a query result, the
keyword DISTINCT is used

 For example, the result of Q11 may have duplicate
SALARY values whereas Q11A does not have any
duplicate values

Q11: SELECT SALARY
FROM EMPLOYEE

Q11A: SELECT DISTINCT SALARY
FROM EMPLOYEE

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 41

SET OPERATIONS

 SQL has directly incorporated some set operations
 There is a union operation (UNION), and in some

versions of SQL there are set difference (MINUS)
and intersection (INTERSECT) operations

 The resulting relations of these set operations are
sets of tuples; duplicate tuples are eliminated from
the result

 The set operations apply only to union compatible
relations ; the two relations must have the same
attributes and the attributes must appear in the
same order

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 42

SET OPERATIONS (cont.)

 Query 4: Make a list of all project numbers for projects that
involve an employee whose last name is 'Smith' as a worker or
as a manager of the department that controls the project.

Q4: (SELECT PNAME
FROM PROJECT, DEPARTMENT, EMPLOYEE
WHERE DNUM=DNUMBER AND

MGRSSN=SSN AND LNAME='Smith')
UNION (SELECT PNAME
FROM PROJECT, WORKS_ON, EMPLOYEE
WHERE PNUMBER=PNO AND ESSN=SSN AND

LNAME='Smith')

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 43

NESTING OF QUERIES

 A complete SELECT query, called a nested query , can be
specified within the WHERE-clause of another query, called the
outer query

 Many of the previous queries can be specified in an alternative
form using nesting

 Query 1: Retrieve the name and address of all employees who
work for the 'Research' department.

Q1: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE
WHERE DNO IN (SELECT DNUMBER

FROM DEPARTMENT
WHERE DNAME='Research')

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 44

NESTING OF QUERIES
(cont.)

 The nested query selects the number of the 'Research' department
 The outer query select an EMPLOYEE tuple if its DNO value is in the

result of either nested query
 The comparison operator IN compares a value v with a set (or

multi-set) of values V, and evaluates to TRUE if v is one of the
elements in V

 In general, we can have several levels of nested queries
 A reference to an unqualified attribute refers to the relation

declared in the innermost nested query
 In this example, the nested query is not correlated with the outer

query

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 45

CORRELATED NESTED
QUERIES

 If a condition in the WHERE-clause of a nested query references
an attribute of a relation declared in the outer query , the two
queries are said to be correlated

 The result of a correlated nested query is different for each tuple
(or combination of tuples) of the relation(s) the outer query

 Query 12: Retrieve the name of each employee who has a
dependent with the same first name as the employee.

Q12: SELECT E.FNAME, E.LNAME
FROM EMPLOYEE AS E
WHERE E.SSN IN (SELECT ESSN

FROM DEPENDENT
WHERE ESSN=E.SSN AND

E.FNAME=DEPENDENT_NAME)

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 46

CORRELATED NESTED
QUERIES (cont.)

– In Q12, the nested query has a different result for each tuple in the
outer query

– A query written with nested SELECT... FROM... WHERE... blocks and
using the = or IN comparison operators can always be expressed as a
single block query. For example, Q12 may be written as in Q12A

Q12A: SELECT E.FNAME, E.LNAME
FROM EMPLOYEE E, DEPENDENT D
WHERE E.SSN=D.ESSN AND

E.FNAME=D.DEPENDENT_NAME

– The original SQL as specified for SYSTEM R also had a CONTAINS
comparison operator, which is used in conjunction with nested
correlated queries

– This operator was dropped from the language, possibly because of the
difficulty in implementing it efficiently

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 47

CORRELATED NESTED
QUERIES (cont.)

– Most implementations of SQL do not have this operator
– The CONTAINS operator compares two sets of values , and returns

TRUE if one set contains all values in the other set
 (reminiscent of the division operation of algebra).

Query 3: Retrieve the name of each employee who works on all the
projects controlled by department number 5.

Q3: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE ((SELECT PNO

 FROM WORKS_ON
 WHERE SSN=ESSN)
 CONTAINS
 (SELECT PNUMBER
 FROM PROJECT
 WHERE DNUM=5))

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 48

CORRELATED NESTED
QUERIES (cont.)

–In Q3, the second nested query, which
is not correlated with the outer query,
retrieves the project numbers of all
projects controlled by department 5
–The first nested query, which is

correlated, retrieves the project
numbers on which the employee
works, which is different for each
employee tuple because of the
correlation

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 49

THE EXISTS FUNCTION

 EXISTS is used to check whether the
result of a correlated nested query is
empty (contains no tuples) or not

 We can formulate Query 12 in an
alternative form that uses EXISTS as
Q12B below

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 50

THE EXISTS FUNCTION
(cont.)

 Query 12: Retrieve the name of each employee
who has a dependent with the same first name
as the employee.

Q12B: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE EXISTS (SELECT *

FROM DEPENDENT
WHERE SSN=ESSN AND

FNAME=DEPENDENT_NAME)

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 51

THE EXISTS FUNCTION
(cont.) Query 6: Retrieve the names of employees who have no

dependents.

Q6: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE NOT EXISTS (SELECT *

FROM DEPENDENT
WHERE SSN=ESSN)

– In Q6, the correlated nested query retrieves all DEPENDENT
tuples related to an EMPLOYEE tuple. If none exist , the
EMPLOYEE tuple is selected

– EXISTS is necessary for the expressive power of SQL

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 52

EXPLICIT SETS

 It is also possible to use an explicit (enumerated)
set of values in the WHERE-clause rather than a
nested query

 Query 13: Retrieve the social security numbers of all
employees who work on project number 1, 2, or 3.

Q13: SELECT DISTINCT ESSN
FROM WORKS_ON
WHERE PNO IN (1, 2, 3)

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 53

NULLS IN SQL QUERIES

 SQL allows queries that check if a value is NULL (missing
or undefined or not applicable)

 SQL uses IS or IS NOT to compare NULLs because it
considers each NULL value distinct from other NULL
values, so equality comparison is not appropriate .

 Query 14: Retrieve the names of all employees who do
not have supervisors.
Q14: SELECT FNAME, LNAME

FROM EMPLOYEE
WHERE SUPERSSN IS NULL

Note: If a join condition is specified, tuples with NULL
values for the join attributes are not included in the
result

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 54

Ex: Library Case

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 55

 Q0: Retrieve semua ID anggota yang pernah meminjam

SELECT Id_user

FROM TRANSAKSI
 Q1: Retrieve semua nama anggota yang pernah meminjam

SELECT Name

FROM ANGGOTA AS A

WHERE A.Id_user IN (
SELECT DISTICT Id_user

FROM TRANSAKSI AS T

WHERE T.Id_user = A.Id_user)

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 56

 Q2: Retrieve nama peminjam dan kode
koleksi yang memiliki Issn/Isbn dan belum
dikembalikan

 Q3: Retrieve nama librarian yang melayani
transaksi dengan denda > 10.000

 Q4: Retrieve koleksi yang semuanya terpinjam
 Q5: Retrieve nama anggota dan koleksi yang

dikembalikan yang tidak mendapat denda hari
ini

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 57

 Retrieve nama peminjam dan kode koleksi
yang memiliki Issn/Isbn dan belum
dikembalikan

 SELECT A.Name, T.Code_coll

FROM ANGGOTA A, TRANSAKSI T, KOLEKSI K

WHERE T.Id_user = A.Id_user AND
T.Code_coll = K.Code_coll AND K.Issn/Isbn is
NOT NULL AND T.Back_date is NULL

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 58

 Retrieve nama librarian yang melayani
transaksi dengan denda > 10.000

 SELECT L.Name

FROM LIBRARIAN L, TRANSAKSI T

WHERE L.Id_librarian = T.Id_Librarian AND
T.Fine > 10.000

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 59

 Retrieve koleksi yang semuanya terpinjam
 SELECT K.*

FROM KOLEKSI K, HAVE_TAKEN_BY H

WHERE K.Code_coll = H.Code_coll AND
H.Code_number_left = “ ”

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 60

 Retrieve nama anggota dan kode koleksi yang
dikembalikan yang tidak mendapat denda hari
ini

 SELECT A.Name, T.Code_coll

FROM ANGGOTA A, TRANSAKSI T

WHERE T.Back_date = “11/4/2010” AND
T.Fine = “ ” AND T.Id_user = A.Id_user

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 61

Joined Relations Feature
in SQL2

 Can specify a "joined relation" in the FROM-clause
 Looks like any other relation but is the result of a join
 Allows the user to specify different types of joins

(regular "theta" JOIN, NATURAL JOIN, LEFT OUTER
JOIN, RIGHT OUTER JOIN, CROSS JOIN, etc)

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 62

Joined Relations Feature
in SQL2 (cont.)

 Examples:

Q8: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM EMPLOYEE E S
WHERE E.SUPERSSN=S.SSN

can be written as:

Q8: SELECT E.FNAME, E.LNAME, S.FNAME, S.LNAME
FROM (EMPLOYEE E LEFT OUTER JOIN

EMPLOYEES ON E.SUPERSSN=S.SSN)

Q1: SELECT FNAME, LNAME, ADDRESS
FROM EMPLOYEE, DEPARTMENT
WHERE DNAME='Research' AND

DNUMBER=DNO

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 63

Joined Relations Feature
in SQL2 (cont.)

 could be written as:

Q1: SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE JOIN DEPARTMENT

 ON DNUMBER=DNO)
WHERE DNAME='Research’

or as:

Q1: SELECT FNAME, LNAME, ADDRESS
FROM (EMPLOYEE NATURAL JOIN

DEPARTMENT AS
DEPT(DNAME, DNO, MSSN,
MSDATE)

WHERE DNAME='Research’

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 64

Joined Relations Feature
in SQL2 (cont.)

 Another Example;
– Q2 could be written as follows; this illustrates

multiple joins in the joined tables

Q2: SELECT PNUMBER, DNUM,
LNAME, BDATE, ADDRESS
FROM (PROJECT JOIN

DEPARTMENT ON
DNUM=DNUMBER) JOIN
EMPLOYEE ON
MGRSSN=SSN))

WHERE PLOCATION='Stafford’

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 65

AGGREGATE FUNCTIONS

 Include COUNT, SUM, MAX, MIN, and AVG
 Query 15: Find the maximum salary, the minimum salary,

and the average salary among all employees.

Q15: SELECT MAX(SALARY),
MIN(SALARY), AVG(SALARY)

FROM EMPLOYEE

– Some SQL implementations may not allow more than
one function in the SELECT-clause

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 66

AGGREGATE FUNCTIONS
(cont.)

 Query 16: Find the maximum salary, the minimum
salary, and the average salary among employees who
work for the 'Research' department.

Q16: SELECT MAX(SALARY), MIN(SALARY),
AVG(SALARY)

FROM EMPLOYEE, DEPARTMENT
WHERE DNO=DNUMBER AND

DNAME='Research'

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 67

AGGREGATE FUNCTIONS
(cont.)

 Queries 17 and 18: Retrieve the total number of
employees in the company (Q17), and the number of
employees in the 'Research' department (Q18).

Q17: SELECT COUNT (*)
FROM EMPLOYEE

Q18: SELECT COUNT (*)
FROM EMPLOYEE E S, DEPARTMENT
WHERE DNO=DNUMBER AND

DNAME='Research’ AND E.SUPERSSN = E.SSN
AND S.Name = DEWi

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 68

GROUPING

 In many cases, we want to apply the aggregate
functions to subgroups of tuples in a relation

 Each subgroup of tuples consists of the set of
tuples that have the same value for the grouping
attribute(s)

 The function is applied to each subgroup
independently

 SQL has a GROUP BY-clause for specifying the
grouping attributes, which must also appear in
the SELECT-clause

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 69

GROUPING (cont.)

 Query 20: For each department, retrieve the department number,
the number of employees in the department, and their average
salary.

Q20: SELECT DNO, COUNT (*), AVG
(SALARY)

FROM EMPLOYEE
GROUP BY DNO

– In Q20, the EMPLOYEE tuples are divided into groups--each
group having the same value for the grouping attribute DNO

– The COUNT and AVG functions are applied to each such group
of tuples separately

– The SELECT-clause includes only the grouping attribute and
the functions to be applied on each group of tuples

– A join condition can be used in conjunction with grouping

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 70

GROUPING (cont.)

 Query 21: For each project, retrieve the project number,
project name, and the number of employees who work on
that project.

Q21: SELECT PNUMBER, PNAME, COUNT
(*)

FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME

– In this case, the grouping and functions are applied after the
joining of the two relations

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 71

THE HAVING-CLAUSE

 Sometimes we want to retrieve the
values of these functions for only those
groups that satisfy certain conditions

 The HAVING-clause is used for
specifying a selection condition on
groups (rather than on individual
tuples)

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 72

THE HAVING-CLAUSE
(cont.)

 Query 22: For each project on which more than
two employees work , retrieve the project
number, project name, and the number of
employees who work on that project.

Q22: SELECT PNUMBER, PNAME, COUNT
(*)

FROM PROJECT, WORKS_ON
WHERE PNUMBER=PNO
GROUP BY PNUMBER, PNAME
HAVING COUNT (*) > 2

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 73

SUBSTRING COMPARISON

 The LIKE comparison operator is used
to compare partial strings

 Two reserved characters are used: '%'
(or '*' in some implementations)
replaces an arbitrary number of
characters, and '_' replaces a single
arbitrary character

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 74

SUBSTRING COMPARISON
(cont.)

 Query 25: Retrieve all employees whose address is in
Houston, Texas. Here, the value of the ADDRESS
attribute must contain the substring 'Houston,TX'.

Q25: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE ADDRESS LIKE

'%Houston,TX%’

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 75

SUBSTRING COMPARISON
(cont.)

 Query 26: Retrieve all employees who were born during the
1950s. Here, '5' must be the 8th character of the string
(according to our format for date), so the BDATE value is
'_______5_', with each underscore as a place holder for a
single arbitrary character.

Q26: SELECT FNAME, LNAME
FROM EMPLOYEE
WHERE BDATE LIKE '_______5_’

 The LIKE operator allows us to get around the fact that
each value is considered atomic and indivisible; hence, in
SQL, character string attribute values are not atomic

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 76

ARITHMETIC OPERATIONS

 The standard arithmetic operators '+', '-'. '*', and '/' (for
addition, subtraction, multiplication, and division,
respectively) can be applied to numeric values in an SQL
query result

 Query 27: Show the effect of giving all employees who
work on the 'ProductX' project a 10% raise.

Q27: SELECT FNAME, LNAME, 1.1*SALARY
FROM EMPLOYEE, WORKS_ON,

PROJECT
WHERE SSN=ESSN AND PNO=PNUMBER AND

PNAME='ProductX’

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 77

ORDER BY

 The ORDER BY clause is used to sort the tuples in a
query result based on the values of some attribute(s)

 Query 28: Retrieve a list of employees and the
projects each works in, ordered by the employee's
department, and within each department ordered
alphabetically by employee last name.

Q28: SELECT DNAME, LNAME, FNAME, PNAME
 FROM DEPARTMENT, EMPLOYEE, WORKS_ON, PROJECT

WHERE DNUMBER=DNO AND SSN=ESSN AND
PNO=PNUMBER

ORDER BY DNAME, LNAME

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 78

ORDER BY (cont.)

 The default order is in ascending order of values
 We can specify the keyword DESC if we want a

descending order; the keyword ASC can be used
to explicitly specify ascending order, even
though it is the default

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 79

Summary of SQL Queries

 A query in SQL can consist of up to six clauses, but
only the first two, SELECT and FROM, are mandatory.
The clauses are specified in the following order:

SELECT <attribute l ist>
FROM <table l ist>
[WHERE <condition>]
[GROUP BY <grouping attribute(s)>]
[HAVING <group condition>]
[ORDER BY <attribute l ist>]

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 80

Summary of SQL Queries
(cont.)

 The SELECT-clause lists the attributes or functions to be
retrieved

 The FROM-clause specifies all relations (or aliases) needed in
the query but not those needed in nested queries

 The WHERE-clause specifies the conditions for selection and
join of tuples from the relations specified in the FROM-clause

 GROUP BY specifies grouping attributes
 HAVING specifies a condition for selection of groups
 ORDER BY specifies an order for displaying the result of a

query
 A query is evaluated by first applying the WHERE-clause, then

GROUP BY and HAVING, and finally the SELECT-clause

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 81

Specifying Updates in
SQL

 There are three SQL commands to
modify the database; INSERT, DELETE,
and UPDATE

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 82

INSERT

 In its simplest form, it is used to add
one or more tuples to a relation

 Attribute values should be listed in the
same order as the attributes were
specified in the CREATE TABLE
command

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 83

INSERT (cont.)

 Example:

U1: INSERT INTO EMPLOYEE
VALUES (`Richard',, 'Marini' , '653298653', '30-

DEC-52',
'98 Oak Forest,Katy,TX', 'M', 37000,'987654321',4

)

 An alternate form of INSERT specifies explicitly the attribute
names that correspond to the values in the new tuple

 Attributes with NULL values can be left out
 Example: Insert a tuple for a new EMPLOYEE for whom we only

know the FNAME, LNAME, and SSN attributes.

U1A: INSERT INTO EMPLOYEE (FNAME, LNAME, SSN)
 VALUES ('Richard', 'Marini' , '653298653')

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 84

INSERT (cont.)

 Important Note: Only the constraints
specified in the DDL commands are
automatically enforced by the DBMS when
updates are applied to the database

 Another variation of INSERT allows insertion
of multiple tuples resulting from a query into
a relation

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 85

INSERT (cont.)

– Example: Suppose we want to create a temporary table that has
the name, number of employees, and total salaries for each
department. A table DEPTS_INFO is created by U3A, and is loaded
with the summary information retrieved from the database by the
query in U3B.

U3A: CREATE TABLE DEPTS_INFO
(DEPT_NAME VARCHAR(10),
 NO_OF_EMPS INTEGER,
 TOTAL_SAL INTEGER);

U3B: INSERT INTO DEPTS_INFO (DEPT_NAME,
NO_OF_EMPS, TOTAL_SAL)

SELECT DNAME, COUNT (*), SUM
(SALARY)

FROM DEPARTMENT, EMPLOYEE
WHERE DNUMBER=DNO
GROUP BY DNAME ;

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 86

INSERT (cont.)

 Note: The DEPTS_INFO table may not be up-to-date if
we change the tuples in either the DEPARTMENT or
the EMPLOYEE relations after issuing U3B. We have
to create a view (see later) to keep such a table up to
date.

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 87

DELETE

 Removes tuples from a relation
 Includes a WHERE-clause to select the tuples to be

deleted
 Tuples are deleted from only one table at a time (unless

CASCADE is specified on a referential integrity constraint)
 A missing WHERE-clause specifies that all tuples in the

relation are to be deleted; the table then becomes an
empty table

 The number of tuples deleted depends on the number of
tuples in the relation that satisfy the WHERE-clause

 Referential integrity should be enforced

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 88

DELETE (cont.)

 Examples:
U4A: DELETE FROM EMPLOYEE

WHERE LNAME='Brown’

U4B: DELETE FROM EMPLOYEE
WHERE SSN='123456789’

U4C: DELETE FROM EMPLOYEE
WHERE DNO IN (SELECT

DNUMBER
FROM DEPARTMENT
WHERE DNAME='Research')

U4D: DELETE FROM EMPLOYEE

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 89

UPDATE

 Used to modify attribute values of one or
more selected tuples

 A WHERE-clause selects the tuples to be
modified

 An additional SET-clause specifies the
attributes to be modified and their new
values

 Each command modifies tuples in the same
relation

 Referential integrity should be enforced

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 90

UPDATE (cont.)

 Example: Change the location and controlling
department number of project number 10 to 'Bellaire'
and 5, respectively.

U5: UPDATE PROJECT
SET PLOCATION = 'Bellaire', DNUM

= 5
WHERE PNUMBER=10

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 91

UPDATE (cont.)

 Example: Give all employees in the 'Research' department a 10%
raise in salary.

U6: UPDATE EMPLOYEE
SET SALARY = SALARY *1.1
WHERE DNO IN (SELECT DNUMBER

 FROM DEPARTMENT
 WHERE DNAME='Research')

 In this request, the modified SALARY value depends on the
original SALARY value in each tuple

 The reference to the SALARY attribute on the right of = refers to
the old SALARY value before modification

 The reference to the SALARY attribute on the left of = refers to
the new SALARY value after modification

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 92

Views in SQL
 A view is a “virtual” table that is derived

from other tables
 Allows for limited update operations

(since the table may not physically be
stored)

 Allows full query operations
 A convenience for expressing certain

operations

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 93

Specification of VIEWS
 SQL command: CREATE VIEW

 a table (view) name
 a possible list of attribute names (for

example, when arithmetic operations are
specified or when we want the names to
be different from the attributes in the base
relations)

 a query to specify the table contents

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 94

VIEWS Ex..
 Specify a different WORKS_ON table

CREATE VIEW WORKS_ON_NEW AS

SELECT FNAME, LNAME, PNAME, HOURS

FROM EMPLOYEE, PROJECT, WORKS_ON

 WHERE SSN=ESSN AND PNO=PNUMBER

GROUP BY PNAME;

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 95

Using Virtual Table
 We can specify SQL queries on a newly

create table (view):
SELECT FNAME, LNAME FROM
WORKS_ON_NEW

WHERE PNAME=‘Seena’;
 When no longer needed, a view can be

dropped:
DROP WORKS_ON_NEW;

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 96

Efficient VIEWS
Implementation

 Query modification: present the view
query in terms of a query on the
underlying base tables
 Disadvantage: inefficient for views defined

via complex queries (especially if additional
queries are to be applied to the view within
a short time period)

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 97

 View materialization: involves physically
creating and keeping a temporary table
 assumption: other queries on the view will

follow
 concerns: maintaining correspondence

between the base table and the view when
the base table is updated

 strategy: incremental update

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 98

VIEW Update
 Update on a single view without

aggregate operations: update may map to
an update on the underlying base table

 Views involving joins: an update may map
to an update on the underlying base
relations

 not always possible

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS 99

Un-Updatable VIEWS
 Views defined using groups and

aggregate functions are not updateable
 Views defined on multiple tables using

joins are generally not updateable
 WITH CHECK OPTION: must be added to

the definition of a view if the view is to
be updated
 to allow check for updatability and to plan

for an execution strategy

	Chapter 8
	Slide 2
	Data Definition, Constraints, and Schema Changes
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	CREATE TABLE
	Slide 19
	DROP TABLE
	ALTER TABLE
	REFERENTIAL INTEGRITY OPTIONS
	REFERENTIAL INTEGRITY OPTIONS (continued)
	Slide 24
	Slide 25
	Slide 26
	Retrieval Queries in SQL
	Retrieval Queries in SQL (cont.)
	Relational Database Schema--Figure 5.5
	Populated Database--Fig.5.6
	Simple SQL Queries
	Simple SQL Queries (cont.)
	Slide 33
	Aliases, * and DISTINCT, Empty WHERE-clause
	ALIASES
	ALIASES (cont.)
	UNSPECIFIED WHERE-clause
	UNSPECIFIED WHERE-clause (cont.)
	USE OF *
	USE OF DISTINCT
	SET OPERATIONS
	SET OPERATIONS (cont.)
	NESTING OF QUERIES
	NESTING OF QUERIES (cont.)
	CORRELATED NESTED QUERIES
	CORRELATED NESTED QUERIES (cont.)
	Slide 47
	Slide 48
	THE EXISTS FUNCTION
	THE EXISTS FUNCTION (cont.)
	Slide 51
	EXPLICIT SETS
	NULLS IN SQL QUERIES
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Joined Relations Feature in SQL2
	Joined Relations Feature in SQL2 (cont.)
	Slide 63
	Slide 64
	AGGREGATE FUNCTIONS
	AGGREGATE FUNCTIONS (cont.)
	Slide 67
	GROUPING
	GROUPING (cont.)
	Slide 70
	THE HAVING-CLAUSE
	THE HAVING-CLAUSE (cont.)
	SUBSTRING COMPARISON
	SUBSTRING COMPARISON (cont.)
	Slide 75
	ARITHMETIC OPERATIONS
	ORDER BY
	ORDER BY (cont.)
	Summary of SQL Queries
	Summary of SQL Queries (cont.)
	Specifying Updates in SQL
	INSERT
	INSERT (cont.)
	Slide 84
	Slide 85
	Slide 86
	DELETE
	DELETE (cont.)
	UPDATE
	UPDATE (cont.)
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99

