Chapter 9

Functional Dependencies and Normalization (from E&N,Silberschatz and my editing)

Test

- 1NFRelation should have
no nonatomic attributes
or nested relations.
- 2NF For <u>relations where primary</u> <u>key contains multiple</u> <u>attributes</u>, no nonkey attribute should be functionally dependent on a part of the primary key.
- **3NF** Relation <u>should not have a</u> <u>nonkey attribute functionally</u> <u>determined by another nonkey</u> <u>attribute</u> (or by a set of nonkey attributes.) That is, there should be no transitive dependency of a nonkey attribute on the primary key.

Remedy (Normalization)

Form new relations for each nonatomic attribute or nested relation.

Decompose and set up a new relation for each partial key with its dependent attribute(s). Make sure to keep a relation with the original primary key and any attributes that are fully functionally dependent on it.

Decompose and set up a relation that includes the nonkey attribute(s) that functionally determine(s) other nonkey attribute(s).

Ex: (from Pak Wir's modul)

TABEL TIDAK NORMAL

ID_DOKTER	NAMA	ALAMAT	КОТА	ID_RS	NAMA_RS	KATEGORI_RS	DESKRIPSI_KATEGORI
101	Syamsulhadi	JI. Pramuka 10	Klaten	1001	RS. Moewardi	А	RS. Daerah
102		JI. Slamet Riyadi	Solo	1002	RSI. Kustati	В	RS. Swasta
102 Tunjung Sulaksono			1003	RSU. Karima Utama	В	RS. Swasta	
103	Achmad Subiyanto	JI. Merpati 2	Solo	1002	RSI. Kustati	В	RS. Swasta
104	Tonang Dwi Ardiyanto	JI. Pemuda Tengah 20	Klaten	1001	RS. Moewardi	А	RS. Daerah
105 N	Noor Rachma	II Disong 50		В	RS. Swasta		
	NOOF Rachina	JI. Pisang 50	Solo	1003	RSU. Karima Utama	В	RS. Swasta

Problem?

ID_DOKTER	NAMA	ALAMAT	ΚΟΤΑ	ID_RS	NAMA_RS	KATEGORI_RS	DESKRIPSI_KATEGORI
101	Syamsulhadi	JI. Pramuka 10	Klaten	1001	RS. Moewardi	А	RS. Daerah
102	Tunjung Sulaksono	JI. Slamet Riyadi	Solo	1002	RSI. Kustati	В	RS. Swasta
NULL	NULL	NULL	NULL	1003	RSU. Karima Utama	В	RS. Swasta
103	Achmad Subiyanto	JI. Merpati 2	Solo	1002	RSI. Kustati	в	RS. Swasta
104	Tonang Dwi Ardiyanto	JI. Pemuda Tengah 20	Klaten	1001	RS. Moewardi	А	RS. Daerah
105	Noor Rachma	JI. Pisang 50	Solo	1002	RSI. Kustati	В	RS. Swasta
NULL	NULL	NULL	NULL	1003	RSU. Karima Utama	В	RS. Swasta

- Nested
- NULL
- Anomaly INSERT \rightarrow Input dokter, input RS juga, all
- Anomaly DELETE → 101 dihapus akan kehilangan RS.Moewardi
- Anomaly UPDATE → Ganti nama RS, ganti untuk seluruh dokter dll

• $1^{st} N \rightarrow hilangkan nested$

TABEL DOKTER

ID_DOKTER	NAMA	ALAMAT	ΚΟΤΑ
101	Syamsulhadi	JI. Pramuka 10	Klaten
102	Tunjung Sulaksono	JI. Slamet Riyadi	Solo
103	Achmad Subiyanto	JI. Merpati 2	Solo
104	Tonang Dwi Ardiyanto	JI. Pemuda Tengah 20	Klaten
105	Noor Rachma	JI. Pisang 50	Solo

TABEL DOKTER_RUMAH SAKIT

ID_DOKTER	ID_RS	NAMA_RS	KATEGORI_RS	DESKRIPSI_KATEGORI
101	1001	RS. Moewardi	А	RS. Daerah
102	1002	RSI. Kustati	В	RS. Swasta
103	1003	RSU. Karima Utama	В	RS. Swasta
103	1002	RSI. Kustati	В	RS. Swasta
104	1001	RS. Moewardi	А	RS. Daerah
105	1002	RSI. Kustati	В	RS. Swasta
105	1003	RSU. Karima Utama	В	RS. Swasta

TABEL DOKTER

ID_DOKTER	NAMA	ALAMAT	KOTA
101	Syamsulhadi	JI. Pramuka 10	Klaten
102	Tunjung Sulaksono	JI. Slamet Riyadi	Solo
103	Achmad Subiyanto	JI. Merpati 2	Solo
104	Tonang Dwi Ardiyanto	JI. Pemuda Tengah 20	Klaten
105	Noor Rachma	JI. Pisang 50	Solo

TABEL DOKTER_RUMAH SAKIT

ID_DOKTER	ID_RS	NAMA_RS	KATEGORI_RS	DESKRIPSI_KATEGORI
101	1001	RS. Moewardi	А	RS. Daerah
102	1002	RSI. Kustati	В	RS. Swasta
103	1003	RSU. Karima Utama	В	RS. Swasta
103	1002	RSI. Kustati	В	RS. Swasta
104	1001	RS. Moewardi	А	RS. Daerah
105	1002	RSI. Kustati	В	RS. Swasta
105	1003	RSU. Karima Utama	В	RS. Swasta
			A	
		—	—	

TABEL DOKTER

ID_DOKTER	NAMA	ALAMAT	KOTA
101	Syamsulhadi	JI. Pramuka 10	Klaten
102	Tunjung Sulaksono	JI. Slamet Riyadi	Solo
103	Achmad Subiyanto	JI. Merpati 2	Solo
104	Tonang Dwi Ardiyanto	JI. Pemuda Tengah 20	Klaten
105	Noor Rachma	JI. Pisang 50	Solo

TABEL DOKTER_RUMAH SAKIT

ID_DOKTER	ID_RS	NAMA_RS	KATEGORI_RS	DESKRIPSI_KATEGORI			
101	1001	RS. Moewardi	Α	RS. Daerah			
102	1002	RSI. Kustati	В	RS. Swasta			
103	1003	RSU. Karima Utama	В	RS. Swasta			
103	1002	RSI. Kustati	В	RS. Swasta			
104	1001	RS. Moewardi	A	RS. Daerah			
105	1002	RSI. Kustati	В	RS. Swasta			
105	1003	RSU. Karima Utama	В	RS. Swasta			
			4				
		\	_				

• $2^{nd} N \rightarrow hilangkan partial FD$

TABEL DOKTER

ID_DOKTER	NAMA	ALAMAT	КОТА
101	Syamsulhadi	JI. Pramuka 10	Klaten
102	Tunjung Sulaksono	JI. Slamet Riyadi	Solo
103	Achmad Subiyanto	JI. Merpati 2	Solo
104	Tonang Dwi Ardiyanto	JI. Pemuda Tengah 20	Klaten
105	Noor Rachma	JI. Pisang 50	Solo

TABEL PRAKTEK

ID_DOKTER	ID_RS
101	1001
102	1002
102	1003
103	1002
104	1001
105	1002
105	1001

TABEL RUMAH SAKIT

ID_RS	NAMA_RS	KATEGORI_RS	DESKRIPSI_KATEGORI
1001	RS. Moewardi	А	RS. Daerah
1002	RSI. Kustati	В	RS. Swasta
1003	RSU. Karima Utama	В	RS. Swasta

FD

TABEL DOKTER

ID_DOKTER	NAMA	ALAMAT	КОТА
101	Syamsulhadi	JI. Pramuka 10	Klaten
102	Tunjung Sulaksono	JI. Slamet Riyadi	Solo
103	Achmad Subiyanto	JI. Merpati 2	Solo
104	Tonang Dwi Ardiyanto	JI. Pemuda Tengah 20	Klaten
105	Noor Rachma	JI. Pisang 50	Solo

TABEL PRAKTEK

ID_DOKTER	ID_RS
101	1001
102	1002
102	1003
103	1002
104	1001
105	1002
105	1001

TABEL RUMAH SAKIT

ID_RS	NAMA_RS	KATEGORI_RS	DESKRIPSI_KATEGORI
1001	RS. Moewardi	А	RS. Daerah
1002	RSI. Kustati	В	RS. Swasta
1003	RSU. Karima Utama	В	RS. Swasta

3th N → hilangkan transitive FD X->Y, Y->Z, dimana Y adl non-prime attribute

TABEL DOKTER

ID_DOKTER	NAMA	ALAMAT	КОТА
101	Syamsulhadi	JI. Pramuka 10	Klaten
102	Tunjung Sulaksono	JI. Slamet Riyadi	Solo
103	Achmad Subiyanto	JI. Merpati 2	Solo
104	Tonang Dwi Ardiyanto	JI. Pemuda Tengah 20	Klaten
105	Noor Rachma	JI. Pisang 50	Solo

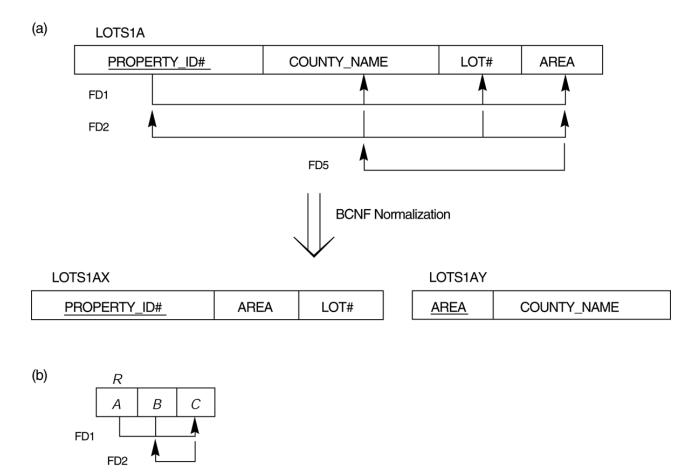
TABEL RUMAH SAKIT

ID_RS	NAMA_RS	KATEGORI_RS
1001	RS. Moewardi	А
1002	RSI. Kustati	В
1003	RSU. Karima Utama	В

TABEL PRAKTEK

ID_RS
1001
1002
1003
1002
1001
1002
1001

TABEL KATEGORI RS


KATEGORI_RS	DESKRIPSI_KATEGORI	
А	RS. Daerah	
В	RS. Swasta	

BCNF

- A relation schema R is in Boyce-Codd Normal Form (BCNF) if whenever an FD X -> A holds in R, then X is a superkey of R
- Each normal form is strictly stronger than the previous one
 - Every 2NF relation is in 1NF
 - Every 3NF relation is in 2NF
 - Every BCNF relation is in 3NF
- There exist relations that are in 3NF but not in BCNF
- The goal is to have each relation in BCNF (or 3NF)
 DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS

11

 (a) BCNF normalization of LOTS1A with the functional dependency FD2 being lost in the decomposition. (b) A schematic relation with FDs; it is in 3NF, but not in BCNF.

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS

TEACH

STUDENT	COURSE	INSTRUCTOR
Narayan	Database	Mark
Smith	Database	Navathe
Smith	Operating Systems	Ammar
Smith	Theory	Schulman
Wallace	Database	Mark
Wallace	Operating Systems	Ahamad
	1 3 9	
Wong	Database	Omiecinski
Zelaya	Database	Navathe
zeiaya	Dalabase	Inavalite

BCNF, Decomp 1

- Two FDs exist in the relation TEACH:
 - fd1: { student, course} -> instructor
 - fd2: instructor ->course
- {student, course} is a candidate key for this relation and that the dependencies shown follow the pattern in. So this relation is in 3NF <u>but not in</u> BCNF

BCNF, Decomp 2

- Three possible decompositions for relation TEACH
 - {<u>student</u>, instructor} and {<u>student</u>, course}
 - {course, instructor } and {course, student}
 - {<u>instructor</u>, course } and {<u>instructor</u>, <u>student</u>}
- All three decompositions will lose fd1. We have to settle for sacrificing the functional dependency preservation. But we <u>cannot</u> sacrifice the non-additivity property after decomposition.
- Out of the above three, only the 3rd decomposition will not generate spurious tuples after join.(and hence has the non-additivity property).

Comparing the Normal Form Poor Relational Schema Design

Eliminate the non-trivial functional dependencies of non-key attributes to key 1NF

2NF

3NF

Eliminate partial FDs of non-key attributes to key

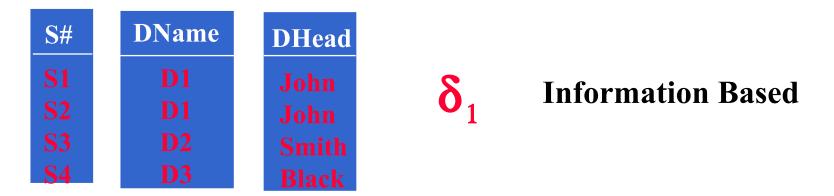
Developed as Stepping Stone

Eliminate transitive FDs of non-key attributes to key

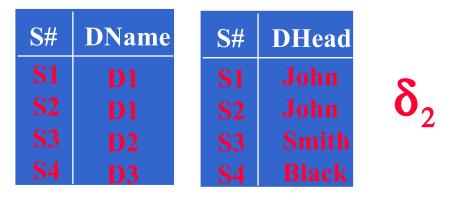
Eliminate partial and transitive FDs of key attributes to key

Recall Transitive FD

$\mathbf{R} = (\mathbf{U}, \mathbf{F})$
U = { S#, DName, DHead }
$\mathbf{F} = \{ S \# \rightarrow \mathbf{DName}, \}$
DName \rightarrow DHead }


S1D1JohnS2D1JonhS3D2Smith	S#	DName	DHead
S2 D1 Jonh	S1	D1	John
S2 D2 Smith	S2		
55 512 51111	S3	D2	Smith
S4 D3 Black	S4	D3	Black

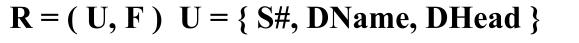
- $S# \rightarrow Dhead''$ is a Transitive FD
 - When S4 Graduates, Head Information of D3 Lost
 - Similarly, If D5 has No Students Yet, then the Head Information cannot be Stored in this Database
 - Update Head of Any Department Requires an Update to Every Student Enrolled in the Dept.


Possible Decompositions

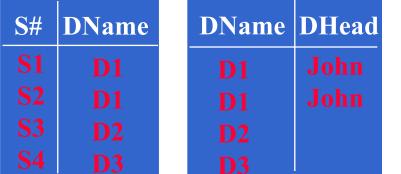
R = (**U**, **F**) **U** = { **S#, DName, DHead** }

 $F = \{ S \# \rightarrow DName, DName \rightarrow DHead \}$

 $δ_1 = \{ R_1(S#, \emptyset), R_2(DName, \emptyset), R_3(DHead, \emptyset) \}$ δ₁ Neither Lossless nor FD-Preserving $R = (U, F) U = \{ S\#, DName, DHead \}$ $F = \{ S\# \rightarrow DName, DName \rightarrow DHead \}$



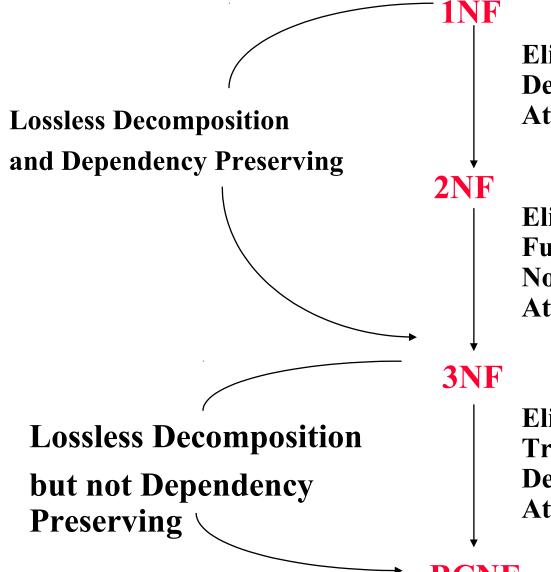
Lossless Decomposition but not Dependency-Preserving
DName→DHead is lost in the decomposition


 $\delta_2 = \{ R_1(\{S\#, DName\}, \{S\# \rightarrow DName\}), \}$

 $R_2({S\#, DHead}, {S\#\rightarrow DHead}))$

δ₂ Lossless but not FD-Preserving

 $\mathbf{F} = \{ S \# \rightarrow \mathbf{DName}, \mathbf{DName} \rightarrow \mathbf{DHead} \}$


δ₃ Lossless & dependencypreserving decomposition

 $\delta_3 = \{ R_1(\{S\#, DName\}, \{S\# \rightarrow DName\}) \}$

 $R_3(\{DName, DHead\}, \{Dname \rightarrow DHead\})\}$

δ_3 is both Lossless and FD-Preserving

Summary of Normlz

Eliminate the Partial Functional Dependencies of Non-prime Attributes to Key Attributes

Eliminate the Transitive Functional Dependencies of Non-prime Attributes to Key Attributes

Eliminate the Partial and Transitive Functional Dependencies of Prime (Key) Attributes to Key

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS

1NF **Eliminate Partial FDs of Non-prime Attributes to Key 2NF Eliminate Transitive FDs of Non**prime Attributes to Key **3NF Eliminate Partial and Transitive FDs** of Prime Attributes to Key BCNF **Eliminate Non-trivial and Non**functional Multi-Valued Dependencies 4NF**Eliminate Join Dependencies that are** Not Implied by Candidate Key

DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS

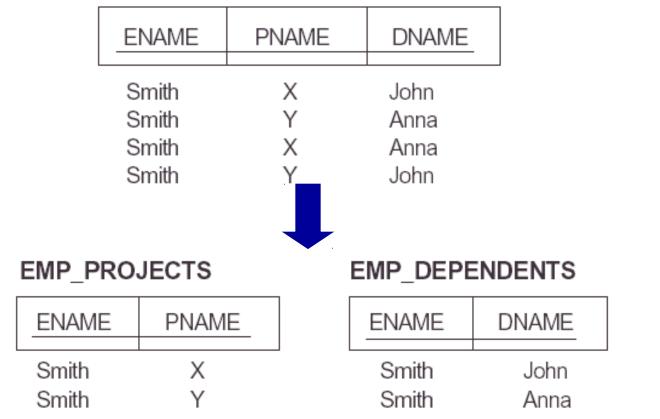
Multivalued Dependences

- Focused on the Concept of Multi-Valued Dependencies
- A MVD X →→ Y Indicates that a Value of X Corresponds to Multiple Values of Y
- Consider EMP with MVDs:
 - ENAME $\rightarrow \rightarrow$ PNAME (E works on many Project)
 - ENAME $\rightarrow \rightarrow$ DNAME (E has many Dependents)

ENAME	PNAME	DNAME
Smith	Х	John
Smith	Y	Anna
Smith	Х	Anna
Smith	Y	John

		_	
_			•
_	n./		
_	IV		
_			

4th Normal Form


- A Relation Schema R is in Fourth Normal Form
 (4NF) w.r.t Dependencies F (FD and MVD) if for every
 Non-Trivial MVD X →→ Y in F⁺, X is a Superkey for R\
- MVD X $\rightarrow \rightarrow$ Y in R is called trivial if
 - Y is subset of X, or
 - X U Y = R
- Reconsider EMP with MVDs:
 - ENAME $\rightarrow \rightarrow$ PNAME (E works on many P)
 - ENAME $\rightarrow \rightarrow$ DNAME (E has many Dependents)
- ENAME is Not a Superkey of R since Need Triple of ENAME, PNAME, and DNAME to Distinguish
- We need to Decompose EMP! DBMS odd 2011 D.W.W- Information System Lab-Informatics Department-UNS

Note on FD

- A functional dependency is trivial if it is satisfied by all instances of a relation
- *E.g*.
 - customer-name, loan-number → customername
 - customer-name \rightarrow customer-name
- In general, $\alpha \rightarrow \beta$ is trivial if $\beta \subseteq \alpha$

Decomp into 4NF

EMP

ENAME $\rightarrow \rightarrow$ PNAME is Trivial MVD: ENAME \cup PNAME is Equal to EMP_PROJECTS (same for ENAME $\rightarrow \rightarrow$ DNAME)

Multivalued Dep and 4NF

Decomposing a relation state of EMP that is not in 4NF. (a) EMP relation with additional tuples. (b) Two corresponding 4NF relations EMP_PROJECTS and EMP_DEPENDENTS.

(a)	EMP			(b)	EMP_PROJE	ECTS
	ENAME	PNAME	DNAME		ENAME	PNAME
	Smith Smith	X Y	John Anna	-	Smith Smith	X Y
	Smith Smith	X Y	Anna John		Brown Brown	W X
	Brown Brown	W X	Jim Jim		Brown Brown	Y Z
	Brown Brown	Y Z	Jim Jim		EMP_DEPEN	NDENTS
	Brown Brown	W X	Joan Joan		ENAME	DNAME
	Brown Brown	Y Z	Joan Joan Data		Smith	Anna
	Brown Brown Brown	W X	Bob Bob Bob		Smith Brown Brown	John Jim
	Brown Brown	Y Z	Bob Bob		Brown Brown	Joan Bob