
Chapter 2
Database System

Concepts and
Architecture (from

E&N and my editing)

 2

 Data Models
 Categories of Data Models
 History of Data Models

 Schema
 Three-Schema Architecture

 DBMS Component
 DBMS Architecture

 3

Data Models

 Data Model: A set of concepts to describe
the structure of a database, and certain
constraints that the database should obey.

 Data Model Operations: Operations for
specifying database retrievals and updates by
referring to the concepts of the data model.
Operations on the data model may include
basic operations and user-defined operations.

 4

Categories of data
models

 Conceptual (high-level , semantic) data
models: Provide concepts that are close to the way
many users perceive data. (Also called entity-
based or object-based data models.)

 Physical (low-level , internal) data models:
Provide concepts that describe details of how data
is stored in the computer.

 Implementation (representational) data
models: Provide concepts that fall between the
above two, balancing user views with some
computer storage details.

 5

History of Data Models
 Relational Model: proposed in 1970 by E.F. Codd (IBM), first

commercial system in 1981-82. Now in several commercial
products (DB2, ORACLE, SQL Server, SYBASE, INFORMIX).

 Network Model: the first one to be implemented by Honeywell in
1964-65 (IDS System). Adopted heavily due to the support by
CODASYL (CODASYL - DBTG report of 1971). Later implemented
in a large variety of systems - IDMS (Cullinet - now CA), DMS 1100
(Unisys), IMAGE (H.P.), VAX -DBMS (Digital Equipment Corp.).

 Hierarchical Data Model: implemented in a joint effort by IBM and
North American Rockwell around 1965. Resulted in the IMS family
of systems. The most popular model. Other system based on this
model: System 2k (SAS inc.)

 6

History of Data Models

 Object-oriented Data Model(s): several models have been
proposed for implementing in a database system. One set
comprises models of persistent O-O Programming
Languages such as C++ (e.g., in OBJECTSTORE or VERSANT),
and Smalltalk (e.g., in GEMSTONE). Additionally, systems like
O2, ORION (at MCC - then ITASCA), IRIS (at H.P.- used in Open
OODB).

 Object-Relational Models: Most Recent Trend. Started with
Informix Universal Server. Exemplified in the latest versions
of Oracle-10i, DB2, and SQL Server etc. systems.

 7

Hierarchical Model

• ADVANTAGES:
• Hierarchical Model is simple to construct and operate on
• Corresponds to a number of natural hierarchically

organized domains - e.g., assemblies in manufacturing,
personnel organization in companies

• Language is simple; uses constructs like GET, GET UNIQUE,
GET NEXT, GET NEXT WITHIN PARENT etc.

• DISADVANTAGES:
• Navigational and procedural nature of processing
• Database is visualized as a linear arrangement of records
• Little scope for "query optimization"

 8

Courses
Course#* Title Descrip

Prereq
PCourse#* Title

Formats
Section#* Quarter Campus

Student
SSN#* Name GPA

Faculty
SSFaN#* Name Phone

1

n

1

n

1
n

1

1

 9

Network Model
• ADVANTAGES:

• Network Model is able to model complex relationships and
represents semantics of add/delete on the relationships.

• Can handle most situations for modeling using record types and
relationship types.

• Language is navigational; uses constructs like FIND, FIND
member, FIND owner, FIND NEXT within set, GET etc.
Programmers can do optimal navigation through the database.

• DISADVANTAGES:
• Navigational and procedural nature of processing
• Database contains a complex array of pointers that thread

through a set of records.
• Little scope for automated "query optimization”

 10

Courses
Course#* Title Descrip

Prereq
PCourse#* Title

Formats
Section#* Quarter Campus

Student
SSN#* Name GPA

Faculty
SSN#* Name Phone

Requirements COfferings QtrOfferings

Takes Teaches

 11

Relational Model

 Relational Model of Data Based on the Concept of a Relation
 Relation- a Mathematical Concept Based on Sets
 Strength of the Relational Approach to Data Management Comes

From the Formal Foundation Provided by the Theory of Relations
 RELATION: A Table of Values

 A Relation May Be Thought of as a Set of Rows
 A Relation May Alternately be Though of as a Set of Columns
 Each Row of the Relation May Be Given an Identifier
 Each Column Typically is Called by its Column Name or Column Header or

Attribute Name

 12

Relational Tables -
Rows/Columns/Tuples

 13

Entity Relationship (ER)
Data Model

 Originally Proposed by P. Chen, ACM TODS, Vol. 1, No. 1, Originally Proposed by P. Chen, ACM TODS, Vol. 1, No. 1,
March1976March1976

 Conceptual Modeling of Database RequirementsConceptual Modeling of Database Requirements
 Allows an Application's Information to be CharacterizedAllows an Application's Information to be Characterized
 Basic Building Blocks are Entities and RelationshipsBasic Building Blocks are Entities and Relationships
 Well-Understood and Studied TechniqueWell-Understood and Studied Technique
 Well-Suited for Relational Database DevelopmentWell-Suited for Relational Database Development
 Did Not Originally Include Inheritance!!Did Not Originally Include Inheritance!!

 14

 15

Object-Oriented Database
Models/Systems

 Reasons for Creation of Object Oriented Databases
 Need for More Complex Applications
 Need for Additional Data Modeling Features
 Increased Use of Object-oriented Programming Languages

 Experimental Systems: Orion at MCC, IRIS at H-P Labs, Open-oodb at
T.I., ODE at ATT Bell Labs, Postgres - Montage - Illustra at UC/B,
Encore/observer at Brown

 Commercial OO Database Products: Ontos, Gemstone (-> Ardent),
Objectivity, Objectstore (-> Excelon), Versant, Poet, Jasmine (Fujitsu
– GM)

 Also - Relational Products with Object Capabilities

 16

Object-Oriented Database
Models/Systems

 OO Databases Try to Maintain a Direct Correspondence
Between Real-world and DB Objects

 Object have State (Value) and Behavior (Operations)
 In OO Databases

 Objects May Have an Object Structure of Arbitrary Complexity
in Order to Contain All of the Necessary Information That
Describes the Object

 In Traditional Database Systems
 Information About a Complex Object is Often Scattered Over

Many Relations or Records
 Leads to Loss of Direct Correspondence Between a Real-world

Object and Its Database Representation

 Supports OO Programming Concepts: Inheritance,
Polymorphism, etc.

 17

Object-Oriented Database
Declarations

 Specifying the Object Types Employee, Date, and
Department Using Type Constructors

 18

 Adding Operations to Definitions of Employee and
Department:

 19

Schemas

 Database Schema: The description of a database. Includes
descriptions of the database structure and the constraints
that should hold on the database.

 Schema Diagram: A diagrammatic display of (some aspects
of) a database schema.

 Schema Construct : A component of the schema or an
object within the schema, e.g., STUDENT, COURSE.

 Database State/Snapshot : The actual data stored in a
database at a particular moment in time. Also called the
current set of occurrences/instances).

 20

 21

Schemas versus Instances
• Database Schema: The description of a

database. Includes descriptions of the
database structure and the constraints that
should hold on the database.

• Database Instance: The actual data
stored in a database at a particular moment
in time. Also called database state (or
occurrence).

 22

Database Schema Vs.
Database State

• Database State: Refers to the content of a database at
a moment in time.

• Initial Database State: Refers to the database when it
is loaded

• Valid State: A state that satisfies the structure and
constraints of the database.

• Distinction
• The database schema changes very infrequently. The

database state changes every time the database is updated.
• Schema is also called intension, whereas state is called

extension.

 23

Three-Schema
Architecture

• Proposed to support DBMS
characteristics of:
• Program-data independence.
• Support of multiple views of the data.

 24

 25

 26

Three-Schema
Architecture

• Defines DBMS schemas at three levels:
• Internal schema at the internal level to describe

physical storage structures and access paths.
Typically uses a physical data model.

• Conceptual schema at the conceptual level to
describe the structure and constraints for the
whole database for a community of users. Uses a
conceptual or an implementation data model.

• External schemas at the external level to
describe the various user views. Usually uses the
same data model as the conceptual level.

 27

Three-Schema
Architecture

Mappings among schema levels are
needed to transform requests and data.
Programs refer to an external schema,
and are mapped by the DBMS to the
internal schema for execution.

 28

Conceptual Schema

 Describes the Meaning of Data in the Universe of Discourse
 Emphasizes on General, Conceptually Relevant, and Often

Time Invariant Structural Aspects of the Universe of
Discourse

 Excludes the Physical Organization and Access Aspects of the
Data

 29

Ext Schema

 Describes Parts of the Information in the Conceptual
Schema in a form Convenient to a Particular User Group’s
View

 Derived from the Conceptual Schema

 30

Internal Schema

 31

Unified Example of Three
Schemas

 32

Data Independence

• Logical Data Independence: The capacity
to change the conceptual schema without
having to change the external schemas and
their application programs.

• Physical Data Independence: The
capacity to change the internal schema
without having to change the conceptual
schema.

 33

 Ability that Allows Application Programs Not Being
Affected by Changes in Irrelevant Parts of the Conceptual
Data Representation, Data Storage Structure and Data
Access Methods

 Invisibility (Transparency) of the Details of Entire Database
Organization, Storage Structure and Access Strategy to the
Users

 Both Logical and Physical

 Recall Software Engineering Concepts:
 Abstraction the Details of an Application's Components Can Be

Hidden, Providing a Broad Perspective on the Design
 Representation Independence : Changes Can Be Made to the

Implementation that have No Impact on the Interface and Its Users

 34

Data Independence

When a schema at a lower level is changed,
only the mappings between this schema
and higher-level schemas need to be
changed in a DBMS that fully supports data
independence. The higher-level schemas
themselves are unchanged. Hence, the
application programs need not be changed
since they refer to the external schemas.

 35

Physical Data
Independence

Physical

 36

Logical Data
Independence

Logical

 37

DBMS Languages

• Data Definition Language (DDL): Used by the
DBA and database designers to specify the
conceptual schema of a database. In many DBMSs,
the DDL is also used to define internal and
external schemas (views). In some DBMSs,
separate storage definition language (SDL)
and view definition language (VDL) are used
to define internal and external schemas.

 38

DBMS Languages

• Data Manipulation Language (DML):
Used to specify database retrievals and
updates.
• DML commands (data sublanguage) can

be embedded in a general-purpose
programming language (host language),
such as COBOL, C or an Assembly Language.

• Alternatively, stand-alone DML commands
can be applied directly (query language).

 39

DBMS Languages

• High Level or Non-procedural
Languages: e.g., SQL, are set-oriented and
specify what data to retrieve than how to
retrieve. Also called declarative languages.

• Low Level or Procedural Languages:
record-at-a-time; they specify how to retrieve
data and include constructs such as looping.

 40

DBMS Interfaces
• Stand-alone query language interfaces.
• Programmer interfaces for embedding DML in

programming languages:
• Pre-compiler Approach
• Procedure (Subroutine) Call Approach

• User-friendly interfaces:
• Menu-based, popular for browsing on the web
• Forms-based, designed for naïve users
• Graphics-based (Point and Click, Drag and Drop etc.)
• Natural language: requests in written English
• Combinations of the above

 41

Database System Env

 Main DBMS Modules
 DDL Compiler
 DML Compiler
 Ad-hoc (Interactive) Query Compiler
 Run-time Database Processor
 Stored Data Manager
 Concurrency/Back-Up/Recovery Subsystem

 DBMS Utility Modules
 Loading Routines
 Backup Utility
 …

 42

Other DBMS Interfaces

• Speech as Input and Output
• Web Browser as an interface
• Parametric interfaces (e.g., bank tellers)

using function keys.
• Interfaces for the DBA:

• Creating accounts, granting authorizations
• Setting system parameters
• Changing schemas or access path

 43

Component Moduls and
Intr

 44

Database System Util it ies

• To perform certain functions such as:
• Loading data stored in files into a database.

Includes data conversion tools.
• Backing up the database periodically on tape.
• Reorganizing database file structures.
• Report generation utilities.
• Performance monitoring utilities.
• Other functions, such as sorting, user monitoring,

data compression, etc.

 45

Other Tools

• Data dictionary / repository :
• Used to store schema descriptions and other information such

as design decisions, application program descriptions, user
information, usage standards, etc.

• Active data dictionary is accessed by DBMS software and
users/DBA.

• Passive data dictionary is accessed by users/DBA only.

• Application Development Environments and
CASE (computer-aided software engineering)
tools:

 Examples – Power builder (Sybase), Builder (Borland), VB,
Java, C, C++, Ms. Visio, ER-Win, DBDesigner

 46

Centralized and Client-
Server Architectures

• Centralized DBMS: combines
everything into single system including-
DBMS software, hardware, application
programs and user interface processing
software.

 47

Basic Client-Server
Architectures

• Specialized Servers with
Specialized functions

• Clients
• DBMS Server

 48

Specialized Servers with
Specialized functions:

• File Servers
• Printer Servers
• Web Servers
• E-mail Servers

 49

Clients:

• Provide appropriate interfaces and a client-
version of the system to access and utilize the
server resources.

• Clients maybe diskless machines or PCs or
Workstations with disks with only the client
software installed.

• Connected to the servers via some form of a
network.
 (LAN: local area network, wireless
network, etc.)

 50

DBMS Server

• Provides database query and
transaction services to the clients

• Sometimes called query and transaction
servers

 51

Two Tier Client-Server
Architecture

• User Interface Programs and
Application Programs run on the client
side

• Interface called ODBC (Open Database
Connectivity – see Ch 9) provides an
Application program interface (API) allow
client side programs to call the DBMS. Most
DBMS vendors provide ODBC drivers.

 52

Two Tier Client-Server
Architecture

• A client program may connect to several
DBMSs.

• Other variations of clients are possible: e.g., in
some DBMSs, more functionality is
transferred to clients including data
dictionary functions, optimization and
recovery across multiple servers, etc. In such
situations the server may be called the Data
Server.

 53

Logical Two Tier/Client
Server Architecture

 54

Three Tier Client-Server
Architecture

• Common for Web applications
• Intermediate Layer called Application Server or Web

Server:
• stores the web connectivity software and the rules and

business logic (constraints) part of the application used to
access the right amount of data from the database server

• acts like a conduit for sending partially processed data between
the database server and the client.

• Additional Features- Security:
• encrypt the data at the server before transmission
• decrypt data at the client

 55

Logical Three Tier

 56

Classification of DBMSs

• Based on the data model used:
• Traditional: Relational, Network, Hierarchical.
• Emerging: Object-oriented, Object-relational.

• Other classifications:
• Single-user (typically used with micro- computers)

vs. multi-user (most DBMSs).
• Centralized (uses a single computer with one

database) vs. distributed (uses multiple computers,
multiple databases)

 57

Classification of DBMSs

Distributed Database Systems have
now come to be known as client server
based database systems because they do
not support a totally distributed
environment, but rather a set of database
servers supporting a set of clients.

 58

Variations of Distributed
Environments:

• Homogeneous DDBMS
• Heterogeneous DDBMS
• Federated or Multidatabase

Systems

 59

	Chapter 2
	Slide 2
	Data Models
	Categories of data models
	History of Data Models
	History of Data Models
	Hierarchical Model
	Slide 8
	Network Model
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Schemas versus Instances
	Database Schema Vs. Database State
	Three-Schema Architecture
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Data Independence
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	DBMS Languages
	Slide 38
	Slide 39
	DBMS Interfaces
	Slide 41
	Other DBMS Interfaces
	Slide 43
	Database System Utilities
	Other Tools
	Centralized and Client-Server Architectures
	Basic Client-Server Architectures
	Specialized Servers with Specialized functions:
	Clients:
	DBMS Server
	Two Tier Client-Server Architecture
	Slide 52
	Slide 53
	Three Tier Client-Server Architecture
	Slide 55
	Classification of DBMSs
	Slide 57
	Variations of Distributed Environments:
	Slide 59

