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Preface

Acoustics was originally the study of small pressure waves in air which can be
detected by the human ear: sound. The scope of acoustics has been extended to
higher and lower frequencies: ultrasound and infrasound. Structural vibrations are
now often included in acoustics. Also the perception of sound is an area of acousti-
cal research. In our present introduction we will limit ourselves to the original de-
finition and to the propagation in fluids like air and water. In such a case acoustics
is a part of fluid dynamics.

A major problem of fluid dynamics is that the equations of motion are non-linear.
This implies that an exact general solution of these equations is not available.
Acoustics is a first order approximation in which non-linear effects are neglected.
In classical acoustics the generation of sound is considered to be a boundary con-
dition problem. The sound generated by a loudspeaker or any unsteady movement
of a solid boundary are examples of the sound generation mechanism in classical
acoustics. In the present course we will also include some aero-acoustic processes
of sound generation: heat transfer and turbulence. Turbulence is a chaotic motion
dominated by non-linear convective forces. An accurate deterministic description
of turbulent flows is not available. The key of the famous Lighthill theory of sound
generation by turbulence is the use of an integral equation which is much more
suitable to introducing approximations than a differential equation. We therefore
discuss in some detail the use of Green’s functions to derive integral equations.

Next to Lighthill’s approach which leads to order of magnitude estimate of sound
production by complex flows we also describe briefly the theory of vortex sound
which can be used when a simple deterministic description is available for a flow
at low Mach numbers (for velocities small compared to the speed of sound).

In contrast to most textbooks we have put more emphasis on duct acoustics, both
in relation to its generation by pipe flows, and with respect to more advanced the-
ory on modal expansions and approximation methods. This is particular choice is
motivated by industrial applications like aircraft engines and gas transport systems.

This course is inspired by the book of Dowling and Ffowcs Williams: “Sound and
Sources of Sound” [42]. We also used the lecture notes of the course on aero- and



2 Contents

hydroacoustics given by Crighton, Dowling, Ffowcs Williams, Heckl and Lepping-
ton [34].

Among the literature on acoustics the book of Pierce [158] is an excellent intro-
duction available for a low price from the Acoustical Society of America.

In the preparation of the lecture notes we consulted various books which cover
different aspects of the problem [11, 13, 15, 29, 39, 60, 77, 83, 89, 102, 111, 131,
145, 152, 154, 195, 205].
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1 Some fluid dynamics

1.1 Conservation laws and constitutive equations

In fluid dynamics we consider gas and liquids as a continuum: we assume that
we can define a “fluid particle” which is large compared to molecular scales but
small compared to the other length scales in our problem. We can describe the fluid
motion by using the laws of mass, momentum and energy conservation applied to
an elementary fluid particle. The integral form of the equations of conservation
are given in Appendix A. Applying these laws to an infinitesimal volume element
yields the equations in differential form, which assumes that the fluid properties
are continuous and that derivatives exist. In some cases we will therefore use the
more general integral laws. A conservation law in differential form may be written
as the time derivative of the density of a property plus the divergence of the flux
of this property being equal to the source per unit volume of this property in the
particle [11, 152, 158, 195, 205].

In differential form1 we have for the mass conservation:

∂ρ

∂t
+∇·(ρv) = m (1.1)

or
∂ρ

∂t
+ ∂

∂xi
(ρvi ) = m

where ρ is the fluid density and v = (vi ) is the flow velocity at position x = (xi )

and time t . In principle as we consider a non-relativistic situation mass is conserved
hence in general m = 0. The mass source term m can, however, be used as a
representation for a complex process which we do not want to describe in detail.
We will see, for example, that the action of a pulsating sphere or of heat injection is
well approximated by such a mass source term. There is, on the other hand, some
arbitrariness in the definition of m, which we will specify later when we discuss
the conservation of momentum and energy.

1For convenience later we present the basic conservation laws here both in the Gibbs notation and
the Cartesian tensor notation. In the latter, the summation over the values 1,2,3 is understood with
respect to all suffixes which appear twice in a given term. See also the appendix of [11].



4 1 Some fluid dynamics

The momentum conservation law is2:

∂

∂t
(ρv)+∇·(P + ρvv) = f (1.2)

or
∂

∂t
(ρvi)+ ∂

∂x j
(Pji + ρv jvi) = fi

where f = ( fi) is an external force density (like the gravitational force) and P =
(Pij ) is minus the fluid stress tensor. In some cases one can represent the effect of
an object like a propeller by a force density f acting on the fluid as a source of
momentum.

The fluid stress tensor is related to the pressure p and the viscous stress tensor
τ = (τi j ) by the relationship:

P = p I − τ (1.3)

or

Pij = p δi j − τi j

where I = (δi j ) is the unit tensor, and δi j the Kronecker3 delta. In most of the
applications which we consider in the sequel, we can neglect the viscous stresses.
When this is not the case one usually assumes a relationship between τ and the
deformation rate of the fluid element, expressed in the rate-of-strain tensor ∇v +
(∇v)T. It should be noted that a characteristic of a fluid is that it opposes a rate of
deformation, rather than the deformation itself, as in the case of a solid. When this
relation is linear the fluid is described as Newtonian and the resulting momentum
conservation equation is referred to as the Navier-Stokes equation. Even with such
a drastic simplification, for compressible fluids as we consider in acoustics, the
equations are quite complicated. A considerable simplification is obtained when we
assume Stokes’ hypothesis, that the fluid is in local thermodynamic equilibrium,
so that the pressure p and the thermodynamic pressure are equivalent. In such a
case we have:

τ = η(∇v + (∇v)T)− 2
3η(∇·v)I (1.4)

or

τi j = η
(
∂vi

∂x j
+ ∂v j

∂xi

)
− 2

3
η

(
∂vk

∂xk

)
δi j

2The dyadic product of two vectors v and w is the tensor vw = (viw j ).
3 δi j = 1 if i = j, δi j = 0 if i �= j.
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1.1 Conservation laws and constitutive equations 5

where η is the dynamic viscosity. Equation (1.4) is what we call a constitutive
equation. The viscosity η is determined experimentally and depends in general
on the temperature T and the pressure p. At high frequencies the assumption of
thermodynamic equilibrium may partially fail resulting in a dissipation related to
volume changes ∇·v which is described with a volume viscosity parameter not
simply related to η [215, 158]. These effects are also significant in the propagation
of sound in dusty gases or in air over large distances [205].

In general (m = 0) the energy conservation law is given by ([11, 152, 205]):

∂

∂t
ρ
(

e + 1
2v

2
)
+∇·(ρv(e + 1

2v
2)
)
=

−∇·q −∇·(pv)+ ∇·(τ ·v)+ f ·v
(1.5)

or
∂

∂t
ρ
(

e + 1
2v

2
)
+ ∂

∂xi

(
ρvi (e + 1

2v
2)
)
=

− ∂qi

∂xi
− ∂

∂xi
(pvi )+ ∂

∂xi
(τi jv j )+ fivi

where v = |v|, e is the internal energy per unit of mass4 and q is the heat flux due
to heat conduction.

A commonly used linear constitutive equation for q is Fourier’s law:

q = −K∇T, (1.6)

where K is the heat conductivity which depends on the pressure p and temperature
T . Using the fundamental law of thermodynamics for a reversible process:

T ds = de + p d(ρ−1) (1.7)

and the equation for mechanical energy, obtained by taking the inner product of
the momentum conservation law (equation 1.2) with v, we obtain the equation for
the entropy5

ρT
(∂s

∂t
+ v ·∇s

)
= −∇·q + τ :∇v (1.8)

or

ρT
(∂s

∂t
+ vi

∂s

∂xi

)
= −∂qi

∂xi
+ τi j

∂v j

∂xi

4We call this the specific internal energy, and simply the energy when there is no ambiguity.
5τ :∇v = ∇·(τ ·v)− v·(∇·τ ) since τ is symmetric. Note the convention (∇v)i j = ∂

∂xi
v j .
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6 1 Some fluid dynamics

where s is the specific entropy or entropy per unit of mass. When heat conduction
∇·q and viscous dissipation τ :∇v may be neglected, the flow is isentropic6 . This
means that the entropy s of a fluid particle remains constant:

∂s

∂t
+ v ·∇s = 0. (1.9)

Except for regions near walls this approximation will appear to be quite reasonable
for most of the applications considered. If initially the entropy is equal to a constant
value s0 throughout the fluid, it retains this value, and we have simply a flow of
uniform and constant entropy s = s0. Note that some authors define this type of
flow isentropic.

Equations (1.1–1.9) still contain more unknowns than equations. As closure con-
dition we introduce an additional constitutive equation, for example e = e(ρ, s),
which implies with equation (1.7):

p = ρ2

(
∂e

∂ρ

)
s

(1.10a)

T =
(
∂e

∂s

)
ρ

(1.10b)

In many cases we will specify an equation of state p = p(ρ, s) rather than e =
e(ρ, s). In differential form this becomes:

dp = c2dρ +
(
∂p

∂s

)
ρ

ds (1.11)

where

c2 =
(
∂p

∂ρ

)
s

(1.12)

is the square of the isentropic speed of sound c. While equation (1.12) is a definition
of the thermodynamic variable c(ρ, s), we will see that c indeed is a measure for
the speed of sound. When the same equation of state c(ρ, s) is valid for the entire
flow we say that the fluid is homogeneous. When the density depends only on
the pressure we call the fluid barotropic. When the fluid is homogeneous and the
entropy uniform (ds = 0) we call the flow homentropic.

6When heat transfer is negligible, the flow is adiabatic. It is isentropic when it is adiabatic AND

reversible.
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1.2 Approximations and alternative forms of the conservation laws for ideal fluids 7

In the following chapters we will use the heat capacity at constant volume CV

which is defined for a reversible process by

CV =
(
∂e

∂T

)
V

. (1.13)

For an ideal gas the energy e is a function of the temperature only

e(T ) =
∫ T

0
CV dT . (1.14)

For an ideal gas with constant thermal properties we will often use the simplified
relation

e = CV T . (1.15)

We call this a perfect gas. Expressions for the pressure p and the speed of sound
c will be given in section 2.3. A justification for some of the simplifications intro-
duced will be given in chapter 2 where we will consider the order of magnitude
of various effects and derive the wave equation. Before going further we consider
some useful approximations and some different notations for the basic equations
given above.

1.2 Approximations and alternative forms of the
conservation laws for ideal fluids

Using the definition of convective (or total) derivative7 D/Dt :

D

Dt
= ∂

∂t
+ v ·∇ (1.16)

we can write the mass conservation law (1.1) in the absence of a source (m = 0)
in the form:

1

ρ

Dρ

Dt
= −∇·v (1.17)

which clearly shows that the divergence of the velocity ∇·v is a measure for the
relative change in density of a fluid particle. Indeed, the divergence corresponds to

7The total derivative D f/Dt of a function f = f (xi , t) and velocity field vi denotes just the
ordinary time derivative d f/dt of f (xi (t), t) for a path xi = xi (t) defined by

.
xi= vi , i.e. moving

with a particle along xi = xi (t).
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8 1 Some fluid dynamics

the dilatation rate8 of the fluid particle which vanishes when the density is constant.
Hence, if we can neglect density changes, the mass conservation law reduces to:

∇·v = 0. (1.18)

This is the continuity equation for incompressible fluids. The mass conservation
law (1.17) simply expresses the fact that a fluid particle has a constant mass.

By using the mass conservation law (1.1) without mass source (m = 0) we can
write9 the momentum conservation law for a frictionless fluid (∇·τ negligible) as:

ρ
Dv

Dt
= −∇ p + f . (1.19)

This is Euler’s equation, which corresponds to the second law of Newton (force
= mass × acceleration) applied to a specific fluid element with a constant mass.
The mass remains constant because we consider a specific material element. In the
absence of friction there are no tangential stresses acting on the surface of the fluid
particle. The motion is induced by the normal stresses (pressure force) −∇ p and
the bulk forces f . The corresponding energy equation for a gas is

Ds

Dt
= 0 (1.9)

which states that the entropy of a particle remains constant. This is a consequence
of the fact that heat conduction is negligible in a frictionless gas flow. The heat and
momentum transfer are governed by the same processes of molecular collisions.
The equation of state commonly used in an isentropic flow is

Dp

Dt
= c2 Dρ

Dt
(1.20)

where c = c(ρ, s), a function of ρ and s, is measured or derived theoretically. Note
that in this equation

c2 =
(
∂p

∂ρ

)
s

(1.12)

is not necessarily a constant.

The presence of a non-vanishing mass production m in the continuity equation
(1.1) implies an additional term −mv in the right hand side of (1.19) which should

8Dilatation rate = rate of relative volume change.
9(ρv)t + ∇·(ρvv) = ρtv + ρvt +∇·(ρv)v + ρ(v·∇)v = [ρt + ∇·(ρv)]v + ρ[vt + (v·∇)v].
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1.2 Approximations and alternative forms of the conservation laws for ideal fluids 9

not be forgotten if we start a derivation from (1.19) instead of the original mo-
mentum conservation law (1.2). With external force and mass production equation
(1.19) becomes:

ρ
Dv

Dt
= −∇ p + f − mv. (1.21)

This corresponds to the hypothesis that the injected mass has no velocity in the
laboratory frame of reference. The amount of momentum mv has to be provided
to this mass by the surrounding fluid in order to accelerate the injected mass up to
the local velocity v.

Under reasonably general conditions [130, p.53] the velocity v, like any vector
field, can be split into an irrotational part and a solenoidal part:

v = ∇ϕ +∇×� with ∇·� = 0, (1.22)
or

vi = ∂ϕ

∂xi
+ εi j k

∂�k

∂x j
with

∂� j

∂x j
= 0,

where ϕ is a scalar velocity potential, � = (�i) a vectorial velocity potential or
vector stream function, and εi j k the permutation symbol10. A flow described by
the scalar potential only (v = ∇ϕ) is called a potential flow. This is an important
concept because the acoustic aspects of the flow are linked to ϕ. This is seen from
the fact that ∇·(∇×�) = 0 so that the compressibility of the flow is described by
the scalar potential ϕ. We have from (1.17):

1

ρ

Dρ

Dt
= −∇2ϕ. (1.23)

From this it is obvious that the flow related to the acoustic field is an irrotational
flow. A useful definition of the acoustic field is therefore: the unsteady component
of the irrotational flow field ∇ϕ. The vector stream function describes the vorticity
ω = ∇×v in the flow, because ∇×∇ϕ = 0. Hence we have11:

ω = ∇×(∇×�) = −∇2�. (1.24)

It can be shown that the vorticity ω corresponds to twice the angular velocity � of
a fluid particle. When ρ = ρ(p) is a function of p only, like in a homentropic flow

10 εi j k =


+1 if i j k = 123, 231, or 312,

−1 if i j k = 321, 132, or 213,

0 if any two indices are alike

Note that v×w = (εi j kv jwk).

11 For any vector field A: ∇×(∇×A) = ∇(∇· A)− ∇2 A.
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10 1 Some fluid dynamics

(uniform constant entropy ds = 0), and in the absence of tangential forces due
to the viscosity (τ = 0), we can eliminate the pressure and density from Euler’s
equation by taking the curl of this equation, to obtain

∂ω

∂t
+ v ·∇ω = ω·∇v − ω∇·v + 1

ρ
∇× f . (1.25)

We see that vorticity of the particle is changed either by stretching12 or by a
non-conservative external force field. In a two-dimensional incompressible flow
(∇·v = 0), with velocity v = (vx , vy, 0), the vorticity ω = (0, 0, ωz) is not af-
fected by stretching because there is no flow component in the direction of ω.
Apart from the source term ∇× f , the momentum conservation law reduces to a
purely kinematic law. Hence we can say that � (and ω) is linked to the kinematic
aspects of the flow.

Using the definition of the specific enthalpy i :

i = e + p

ρ
(1.26)

and the fundamental law of thermodynamics (1.7) we find for a homentropic flow
(homogeneous fluid with ds = 0):

di = dp

ρ
. (1.27)

Hence we can write Euler’s equation (1.19) as:

Dv

Dt
= −∇i + 1

ρ
f . (1.28)

We define the total specific enthalpy B (Bernoulli constant) of the flow by:

B = i + 1
2v

2. (1.29)

The total enthalpy B corresponds to the enthalpy which is reached in a hypothet-
ical fully reversible process when the fluid particle is decelerated down to a zero
velocity (reservoir state). Using the vector identity13:

(v ·∇)v = 1
2∇v2 + ω×v

12The stretching of an incompressible particle of fluid implies by conservation of angular momen-
tum an increase of rotation, because the particle’s lateral dimension is reduced. In a viscous flow
tangential forces due to the viscous stress do change the fluid particle angular momentum, because
they exert a torque on the fluid particle.

13[(v·)∇v]i =∑
j v j

∂
∂x j
vi
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1.2 Approximations and alternative forms of the conservation laws for ideal fluids 11

we can write Euler’s equation (1.19) in Crocco’s form:

∂v

∂t
= −∇B − ω×v + 1

ρ
f (1.30)

which will be used when we consider the sound production by vorticity. The accel-
eration ω×v corresponds to the acceleration of Coriolis experienced by an observer
moving with the particle which is rotating at an angular velocity of � = 1

2ω.

When the flow is irrotational in the absence of external force ( f = 0), with v = ∇ϕ
and hence ω = ∇×∇ϕ = 0, we can rewrite (1.28) into:

∂∇ϕ
∂t
+∇B = 0,

which may be integrated to Bernoulli’s equation:

∂ϕ

∂t
+ B = g(t), (1.31a)

or
∂ϕ

∂t
+ 1

2
v2 +

∫
dp

ρ
= g(t) (1.31b)

where g(t) is a function determined by boundary conditions. As only the gradient
of ϕ is important (v = ∇ϕ) we can, without loss of generality, absorb g(t) into ϕ
and use g(t) = 0. In acoustics the Bernoulli equation will appear to be very useful.
We will see in section 2.7 that for a homentropic flow we can write the energy
conservation law (1.9) in the form:

∂

∂t
(ρB − p)+ ∇·(ρvB) = f ·v , (1.32a)

or
∂

∂t

(
ρ(e + 1

2v
2)
)
+ ∇·(ρvB) = f ·v . (1.32b)

Exercises

a) Derive Euler’s equation (1.19) from the conservation laws (1.1) and (1.2).

b) Derive the entropy conservation law (1.9) from the energy conservation law (1.5)
and the second law of thermodynamics (1.7).

c) Derive Bernoulli’s equation (1.31b) from Crocco’s equation (1.30).
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12 1 Some fluid dynamics

d) Is the trace 1
3 Pii of the stress tensor Pij always equal to the thermodynamic pressure

p = (∂e/∂ρ−1)s?

e) Consider, as a model for a water pistol, a piston pushing with a constant acceleration
a water from a tube 1 with surface area A1 and length 
1 through a tube 2 of surface
A2 and length 
2. Calculate the force necessary to move the piston if the water
compressibility can be neglected and the water forms a free jet at the exit of tube
2. Neglect the non-uniformity of the flow in the transition region between the two
tubes. What is the ratio of the pressure drop over the two tubes at t = 0?
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2 Wave equation, speed of sound, and acoustic
energy

2.1 Order of magnitude estimates

Starting from the conservation laws and the constitutive equations given in sec-
tion 1.2 we will obtain after linearization a wave equation in the next section. This
implies that we can justify the approximation introduced in section 1.2, (homen-
tropic flow), and that we can show that in general, sound is a small perturbation
of a steady state, so that second order effects can be neglected. We therefore con-
sider here some order of magnitude estimates of the various phenomena involved
in sound propagation.

We have defined sound as a pressure perturbation p′ which propagates as a wave
and which is detectable by the human ear. We limit ourselves to air and water. In
dry air at 20◦C the speed of sound c is 344 m/s, while in water a typical value
of 1500 m/s is found. In section 2.3 we will discuss the dependence of the speed
of sound on various parameters (such as temperature, etc.). For harmonic pressure
fluctuations, the typical range of frequency of the human ear is:

20 Hz ≤ f ≤ 20 kHz. (2.1)

The maximum sensitivity of the ear is around 3 kHz, (which corresponds to a
policeman’s whistle!). Sound involves a large range of power levels:

– when whispering we produce about 10−10 Watts,
– when shouting we produce about 10−5 Watts,
– a jet airplane at take off produces about 105 Watts.

In view of this large range of power levels and because our ear has roughly a
logarithmic sensitivity we commonly use the decibel scale to measure sound levels.
The Sound Power Level (PWL) is given in decibel (dB) by:

PWL = 10 log10(Power/10−12W). (2.2)
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The Sound Pressure Level (SPL) is given by:

SPL = 20 log10(p
′
rms/pref) (2.3)

where p′rms is the root mean square of the acoustic pressure fluctuations p′, and
where pref = 2 · 10−5 Pa in air and pref = 10−6 Pa in other media. The sound
intensity I is defined as the energy flux (power per surface area) corresponding to
sound propagation. The Intensity Level (IL) is given by:

IL = 10 log10(I/10−12 W/m2). (2.4)

The reference pressure level in air pref = 2 · 10−5 Pa corresponds to the threshold
of hearing at 1 kHz for a typical human ear. The reference intensity level Iref =
10−12 W/m2 is related to this p′ref = 2 · 10−5 Pa in air by the relationship valid for
progressive plane waves:

I = p′2rms/ρ0c0 (2.5)

where ρ0c0 = 4 · 102 kg/m2s for air under atmospheric conditions. Equation (2.5)
will be derived later.

The threshold of pain1 (140 dB) corresponds in air to pressure fluctuations of
p′rms = 200 Pa. The corresponding relative density fluctuations ρ ′/ρ0 are given
at atmospheric pressure p0 = 105 Pa by:

ρ ′/ρ0 = p′/γ p0 ≤ 10−3 (2.6)

where γ = CP/CV is the ratio of specific heats at constant pressure and volume
respectively. In general, by defining the speed of sound following equation 1.12,
the relative density fluctuations are given by:

ρ ′

ρ0
= 1

ρ0c2
0

p′ = 1

ρ0

(
∂ρ

∂p

)
s

p′. (2.7)

The factor 1/ρ0c2
0 is the adiabatic bulk compressibility modulus of the medium.

Since for water ρ0 = 103 kg/m3 and c0 = 1.5 · 103 m/s we see that ρ0c2
0 �

2.2 · 109 Pa, so that a compression wave of 10 bar corresponds to relative density
fluctuations of order 10−3 in water. Linear theory will therefore apply to such com-
pression waves. When large expansion waves are created in water the pressure can

1The SPL which we can only endure for a very short period of time without the risk of permanent
ear damage.
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2.1 Order of magnitude estimates 15

decrease below the saturation pressure of the liquid and cavitation bubbles may ap-
pear, which results in strongly non-linear behaviour. On the other hand, however,
since the formation of bubbles in pure water is a slow process, strong expansion
waves (negative pressures of the order of 103 bar!) can be sustained in water before
cavitation appears.

For acoustic waves in a stagnant medium, a progressive plane wave involves dis-
placement of fluid particles with a velocity u′ which is given by (as we will see in
equations 2.20a, 2.20b):

u′ = p′/ρ0c0. (2.8)

The factor ρ0c0 is called the characteristic impedance of the fluid. By dividing
(2.8) by c0 we see by using (1.12) in the form p′ = c2

0ρ
′ that the acoustic Mach

number u′/c0 is a measure for the relative density variation ρ ′/ρ0. In the absence
of mean flow (u0 = 0) this implies that a convective term such as ρ(v ·∇)v in the
momentum conservation (1.19) is of second order and can be neglected in a linear
approximation.

The amplitude of the fluid particle displacement δ corresponding to harmonic wave
propagation at a circular frequency ω = 2π f is given by:

δ = |u′|/ω. (2.9)

Hence, for f = 1 kHz we have in air:

SPL = 140 dB, p′rms = 2 · 102 Pa, u′ = 5 · 10−1 m/s, δ = 8 · 10−5 m,
SPL = 0 dB, p′rms = 2 · 10−5 Pa, u′ = 5 · 10−8 m/s, δ = 1 · 10−11 m.

In order to justify a linearization of the equations of motion, the acoustic displace-
ment δ should be small compared to the characteristic length scale L in the geom-
etry considered. In other words, the acoustical Strouhal number Sr a = L/δ should
be large. In particular, if δ is larger than the radius of curvature R of the wall at
edges the flow will separate from the wall resulting into vortex shedding. So a small
acoustical Strouhal number R/δ implies that non-linear effects due to vortex shed-
ding are important. This is a strongly non-linear effect which becomes important
with decreasing frequency, because δ increases when ω decreases.

We see from the data given above that the particle displacement δ can be signif-
icantly smaller than the molecular mean free path 
̄ which in air at atmospheric
pressure is about 5 · 10−8 m. It should be noted that a continuum hypothesis as
assumed in chapter 1 does apply to sound even at such low amplitudes because δ
is not the relevant length scale. The continuum hypothesis is valid if we can define
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16 2 Wave equation, speed of sound, and acoustic energy

an air particle which is small compared to the dimensions of our measuring device
(eardrum, diameter D = 5 mm) or to the wave length λ, but large compared to the
mean free path 
̄ = 5 · 10−8 m. It is obvious that we can satisfy this condition since
for f = 20 kHz the wave length:

λ = c0/ f (2.10)

is still large (λ � 1.7 cm) compared to 
̄. In terms of our ear drum we can say
that although a displacement of δ = 10−11 m of an individual molecule cannot be
measured, the same displacement averaged over a large amount of molecules at the
ear drum can be heard as sound.

It appears that for harmonic signals of frequency f = 1 kHz the threshold of hear-
ing p′ref = 2·10−5 Pa corresponds to the thermal fluctuations p′th of the atmospheric
pressure p0 detected by our ear. This result is obtained by calculating the num-
ber of molecules N colliding within half an oscillation period with our eardrum2:
N ∼ n D2c0/2 f , where n is the air molecular number density3. As N � 1020 and
p′th � p0/

√
N we find that p′th � 10−5 Pa.

In gases the continuum hypothesis is directly coupled to the assumption that the
wave is isentropic and frictionless. Both the kinematic viscosity ν = η/ρ and
the heat diffusivity a = K/ρCP of a gas are typically of the order of c
̄, the
product of sound speed c and mean free path 
̄. This is related to the fact that c
is in a gas a measure for the random (thermal) molecular velocities that we know
macroscopically as heat and momentum diffusion. Therefore, in gases the absence
of friction goes together with isentropy. Note that this is not the case in fluids.
Here, isothermal rather than isentropic wave propagation is common for normal
frequencies.

As a result from this relation ν ∼ c
̄, the ratio between the acoustic wave length
λ and the mean free path 
̄, which is an acoustic Knudsen number, can also be
interpreted as an acoustic Fourier number:

λ


̄
= λc

ν
= λ

2 f

ν
. (2.11)

This relates the diffusion length (ν/ f )1/2 for viscous effects to the acoustic wave
length λ. Moreover, this ratio can also be considered as an unsteady Reynolds

2The thermal velocity of molecules may be estimated to be equal to c0.
3n is calculated for an ideal gas with molar mass M from: n = NA ρ/M = NA p/M RT =

p/RT (see section 2.3) where NA is the Avogadro number
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2.1 Order of magnitude estimates 17

number Re t :

Re t =
∣∣∣ρ ∂u′

∂t

∣∣∣∣∣∣η∂2u′

∂x2

∣∣∣ ∼
λ2 f

ν
, (2.12)

which is for a plane acoustic wave just the ratio between inertial and viscous forces
in the momentum conservation law. For air ν = 1.5 · 10−5 m2/s so that for f =
1 kHz we have Re t = 4 · 107. We therefore expect viscosity to play a significant
rôle only if the sound propagates over distances of 107 wave lengths or more (3 ·
103 km for f = 1 kHz). In practice the kinematic viscosity appears to be a rather
unimportant effect in the attenuation of waves in free space. The main dissipation
mechanism is the departure from thermodynamic equilibrium, due to the relatively
long relaxation times of molecular motion associated to the internal degrees of
freedom (rotation, vibration). This effect is related to the so-called bulk or volume
viscosity which we quoted in chapter 1.

In general the attenuation of sound waves increases with frequency. This explains
why we hear the lower frequencies of an airplane more and more accentuated as it
flies from near the observation point (e.g. the airport) away to large distances (10
km).

In the presence of walls the viscous dissipation and thermal conduction will result
into a significant attenuation of the waves over quite short distances. The ampli-
tude of a plane wave travelling along a tube of cross-sectional surface area A and
perimeter L p will decrease with the distance x along the tube following an expo-
nential factor e−αx , where the damping coefficient α is given at reasonably high
frequencies (A/L p 
 √ν/ω but ω

√
A/c0 < 1) by [158]:

α = L p

2Ac

√
π f ν

(
1+ γ − 1√

ν/a

)
. (2.13)

(This equation will be derived in section 4.5.) For air γ = CP/CV = 1.4 while
ν/a = 0.72. For a musical instrument at 400 Hz, such as the clarinet, α = 0.05m−1

so that a frictionless approximation is not a very accurate but still a fair first approx-
imation. As a general rule, at low amplitudes the viscous dissipation is dominant
in woodwind instruments at the fundamental (lowest) playing frequency. At higher
frequencies the radiation losses which we will discuss later (chapter 6) become
dominant. Similar arguments hold for water, except that because the temperature
fluctuations due to compression are negligible, the heat conduction is not signifi-
cant even in the presence of walls (γ = 1).
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18 2 Wave equation, speed of sound, and acoustic energy

A small ratio ρ ′/ρ0 of acoustic density fluctuations ρ ′ to the mean density ρ0 im-
plies that over distances of the order of a few wave lengths non-linear effects are
negligible. When dissipation is very small acoustic waves can propagate over such
large distances that non-linear effects always become significant (we will discuss
this in section 4.2).

2.2 Wave equation for a uniform stagnant fluid and
compactness

2.2.1 Linearization and wave equation

In the previous section we have seen that in what we call acoustic phenomena the
density fluctuations ρ ′/ρ0 are very small. We also have seen that the fluid veloc-
ity fluctuation v′ associated with the wave propagation, of the order of (ρ ′/ρ0)c0,
are also small. This justifies the use of a linear approximation of the equations
describing the fluid motion which we presented in chapter 1.

Even with the additional assumption that the flow is frictionless, the equations one
obtains may still be complex if we assume a non-uniform mean flow or a non-
uniform density distribution ρ0. A derivation of general linearized wave equations
is discussed by Pierce [158] and Goldstein [60].

We first limit ourselves to the case of acoustic perturbations (p′, ρ ′, s′, v′ . . .) of a
stagnant (u0 = 0) uniform fluid (p0, ρ0, s0, . . .). Such conditions are also described
in the literature as a quiescent fluid. In a quiescent fluid the equations of motion
given in chapter 1 simplify to:

∂ρ ′

∂t
+ ρ0∇·v′ = 0 (2.14a)

ρ0
∂v′

∂t
+∇ p′ = 0 (2.14b)

∂s′

∂t
= 0 (2.14c)

where second order terms in the perturbations have been neglected. The constitu-
tive equation (1.12) becomes:

p′ = c2
0ρ
′. (2.15)
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2.2 Wave equation for a uniform stagnant fluid and compactness 19

By subtracting the time derivative of the mass conservation law (2.14a) from the
divergence of the momentum conservation law (2.14b) we eliminate v′ to obtain:

∂2ρ ′

∂t2
−∇2 p′ = 0. (2.16)

Using the constitutive equation p′ = c2
0ρ
′ (2.15) to eliminate either ρ ′ or p′ yields

the wave equations:

∂2 p′

∂t2
− c2

0∇2 p′ = 0 (2.17a)
or

∂2ρ ′

∂t2
− c2

0∇2ρ ′ = 0. (2.17b)

Using the linearized Bernoulli equation:

∂ϕ′

∂t
+ p′

ρ0
= 0 (2.18)

which should be valid because the acoustic field is irrotational4 , we can derive
from (2.17a) a wave equation for ∂ϕ′/∂t . We find therefore that ϕ′ satisfies the
same wave equation as the pressure and the density:

∂2ϕ′

∂t2
− c2

0∇2ϕ′ = 0. (2.19)

Taking the gradient of (2.19) we obtain a wave equation for the velocity v′ = ∇ϕ′.
Although a rather abstract quantity, the potential ϕ′ is convenient for many calcula-
tions in acoustics. The linearized Bernoulli equation (2.18) is used to translate the
results obtained for ϕ′ into less abstract quantities such as the pressure fluctuations
p′.

2.2.2 Simple solutions

Two of the most simple and therefore most important solutions to the wave equa-
tion are d’Alembert’s solution in one and three dimensions. In 1-D we have the
general solution

p′ = f (x − c0t)+ g(x + c0t), (2.20a)

v′ = 1

ρ0c0

(
f (x − c0t)− g(x + c0t)

)
, (2.20b)

4In the case considered this property follows from the fact that ∇×(ρ0
∂
∂t v
′ + ∇ p) = ρ0

∂
∂t (∇×

v′) = 0. In general this property is imposed by the definition of the acoustic field.
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20 2 Wave equation, speed of sound, and acoustic energy

where f and g are determined by boundary and initial conditions, but otherwise
they are arbitrary. The velocity v′ is obtained from the pressure p′ by using the
linearized momentum equation (2.14b). As is seen from the respective arguments
x ± c0t , the “ f ”-part corresponds to a right-running wave (in positive x-direction)
and the “g”-part to a left-running wave. This solution is especially useful to de-
scribe low frequency sound waves in hard-walled ducts, and free field plane waves.
To allow for a general orientation of the coordinate system, a free field plane wave
is in general written as

p′ = f (n·x − c0t), v′ = n
ρ0c0

f (n·x − c0t),

where the direction of propagation is given by the unit vector n. Rather than only
left- and right-running waves as in the 1-D case, in free field any sum (or integral)
over directions n may be taken. A time harmonic plane wave of frequency ω is
usually written in complex form5 as

p′, v′ ∼ eiωt−ik·x,

where the wave-number vector, or wave vector, k = nk = n ωc0
, indicates the

direction of propagation of the wave.

In 3-D we have a general solution for spherically symmetric waves (i.e. depending
only on radial distance r). They are rather similar to the 1-D solution, because the
combination rp(r, t) happens to satisfy the 1-D wave equation (see section 6.2).
Since the outward radiated wave energy spreads out over the surface of a sphere,
the inherent 1/r-decay is necessary from energy conservation arguments.

It should be noted, however, that unlike in the 1-D case, the corresponding radial
velocity v′r is rather more complicated. The velocity should be determined from the
pressure by time-integration of the momentum equation (2.14b), written in radial
coordinates.

We have for pressure and radial velocity

p′ = 1

r
f (r − c0t)+ 1

r
g(r + c0t), (2.21a)

v′r =
1

ρ0c0

(1

r
f (r − c0t)− 1

r2
F(r − c0t)

)
− 1

ρ0c0

(1

r
g(r + c0t)− 1

r2
G(r + c0t)

)
, (2.21b)

5The physical quantity considered is described by the real part.
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2.2 Wave equation for a uniform stagnant fluid and compactness 21

where F(z) = ∫
f (z)dz and G(z) = ∫

g(z)dz. Usually we have only outgoing
waves, which means for any physical solution that the field vanishes before some
time t0 (causality). Hence, f (z) = 0 for z = r − c0t ≥ r − c0t0 ≥ −c0t0 because
r ≥ 0, and g(z) = 0 for any z = r + c0t ≤ r + c0t0. Since r is not restricted from
above, this implies that

g(z) ≡ 0 for all z.

This solution (2.21a,2.21b) is especially useful to describe the field of small sym-
metric sources (monopoles), modelled in a point. Furthermore, by differentiation
to the source position other solutions of the wave equation can be generated (of
dipole-type and higher). For example, since ∂

∂x r = x
r , we have

p′ = x

r2

(
f ′(r − c0t)− 1

r
f (r − c0t)

)
, (2.22a)

v′r =
1

ρ0c0

x

r2

(
f ′(r − c0t)− 2

r
f (r − c0t)+ 2

r2
F(r − c0t)

)
, (2.22b)

where f ′ denotes the derivative of f to its argument.

Since the rôle of r and t is symmetric in f and anti-symmetric in g, we may
formulate the causality condition in t also as a boundary condition in r . A causal
wave vanishes outside a large sphere, of which the radius grows linearly in time
with velocity c0. This remains true for any field in free space from a source of finite
size, because far away the field simplifies to that of a point source (although not
necessarily spherically symmetric).

In the case of the idealization of a time-harmonic field we cannot apply this causal-
ity condition directly, but we can use a slightly modified form of the boundary
condition in r , called Sommerfeld’s radiation condition:

lim
r→∞ r

(∂p′

∂t
+ c0

∂p′

∂r

)
= 0. (2.23)

A more general discussion on causality for a time-harmonic field will be given in
section C.1.1. The general solution of sound radiation from spheres may be found
in [131, ch7.2].

2.2.3 Compactness

In regions –for example at boundaries– where the acoustic potential ϕ′ varies sig-
nificantly over distances L which are short compared to the wave length λ, the
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22 2 Wave equation, speed of sound, and acoustic energy

acoustic flow can locally be approximated as an incompressible potential flow.
Such a region is called compact, and a source of size, much smaller than λ, is a
compact source. For a more precise definition we should assume that we can dis-
tinguish a typical time scale τ or frequency ω and length scale L in the problem.
In dimensionless form the wave equation is then:

3∑
i=1

∂2ϕ′

∂ x̄2
i

= (He )2
∂2ϕ′

∂ t̄2
, He = L

c0τ
= ωL

c0
= 2πL

λ
= kL (2.24)

where t̄ = t/τ = ωt and x̄i = xi/L . The dimensionless number He is called the
Helmholtz number. When τ and L are well chosen, ∂2ϕ′/∂ t̄2 and ∂2ϕ′/∂ x̄2

i are of
the same order of magnitude, and the character of the wave motion is completely
described by He . In a compact region we have:

He � 1. (2.25)

This may occur, as suggested above, near a singularity where spatial gradients
become large, or at low frequencies when time derivatives become small. Within
the compact region the time derivatives, being multiplied by the small He, may be
ignored and the potential satisfies to leading order the Laplace equation:

∇2ϕ′ = 0 (2.26)

which describes an incompressible potential flow (∇·v′ = 0). This allows us to use
incompressible potential flow theory to derive the local behaviour of an acoustic
field in a compact region. If the compact region is embedded in a larger acoustic
region of simpler nature, it acts on the scale of the larger region as a point source,
usually allowing a relatively simple acoustic field. By matching the local incom-
pressible approximation to this “far field” solution (spherical waves, plane waves),
the solutions may be determined. The matching procedure is usually carried out
almost intuitively in the first order approximation. Higher order approximations
are obtained by using the method of Matched Asymptotic Expansions (section 8.8,
[34]).

2.3 Speed of sound

2.3.1 Ideal gas

In the previous section we have assumed that the speed of sound c2
0 = (∂p/∂ρ)s

is constant. However, in many interesting cases c0 is non-uniform in space and
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2.3 Speed of sound 23

this affects the propagation of waves. We therefore give here a short review of
the dependence of the speed of sound in gas and water on some parameters like
temperature.

Air at atmospheric pressure behaves as an ideal gas. The equation of state for an
ideal gas is:

p = ρRT, (2.27)

where p is the pressure, ρ is the density and T is the absolute temperature. R is the
specific gas constant6 which is related to the Boltzmann constant kB = 1.38066 ·
10−23 J/K and the Avogadro number NA = 6.022 · 1023 mol−1 by:

R = kBNA/M, (2.28)

where M is the molar mass of the gas (in kg/mol). For air R = 286.73 J/kg K. For
an ideal gas we have further the relationship:

R = CP − CV , (2.29)

where CP and CV are the specific heats at constant pressure and volume, respec-
tively. For an ideal gas the internal energy e depends only on the temperature [152],
with (1.14) leading to de = CV dT , so that by using the second law of thermody-
namics, we find for an isentropic process (ds = 0):

CV dT = −p d(ρ−1) or
dT

T
= R

CV

dρ

ρ
. (2.30)

By using (2.27) and (2.29) we find for an isentropic process:

dρ

ρ
+ dT

T
= dp

p
= γ dρ

ρ
, (2.31)

where:

γ = CP/CV (2.32)

is the specific-heat ratio. Comparison of (2.31) with the definition of the speed of
sound c2 = (∂p/∂ρ)s yields:

c = (γ p/ρ)1/2 or c = (γ RT )1/2. (2.33)

6The universal gas constant is: R = kBNA = 8.31431 J/K mol.
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24 2 Wave equation, speed of sound, and acoustic energy

We see from this equation that the speed of sound of an ideal gas of given chemical
composition depends only on the temperature. For a mixture of ideal gases with
mole fraction Xi of component i the molar mass M is given by:

M =
∑

i

Mi Xi (2.34)

where Mi is the molar mass of component i . The specific-heat ratio γ of the mix-
ture can be calculated by:

γ =
∑

Xiγi/(γi − 1)∑
Xi/(γi − 1)

(2.35)

because γi/(γi − 1) = Mi Cp,i/R and γi = Cp,i/CV ,i . For air γ = 1.402, whilst
the speed of sound at T = 273.15 K is c = 331.45 m/s. Moisture in air will only
slightly affect the speed of sound but will drastically affect the damping, due to
departure from thermodynamic equilibrium [205].

The temperature dependence of the speed of sound is responsible for spectacular
differences in sound propagation in the atmosphere. For example, the vertical tem-
perature stratification of the atmosphere (from colder near the ground to warmer
at higher levels) that occurs on a winter day with fresh fallen snow refracts the
sound back to the ground level, in a way that we hear traffic over much larger dis-
tances than on a hot summer afternoon. These refraction effects will be discussed
in section 8.6.

2.3.2 Water

For pure water, the speed of sound in the temperature range 273 K to 293 K and
in the pressure range 105 to 107 Pa can be calculated from the empirical formula
[158]:

c = c0 + a(T − T0)+ bp (2.36)

where c0 = 1447 m/s, a = 4.0 m/sK, T0 = 283.16 K and b = 1.6 · 10−6 m/sPa.
The presence of salt in sea water does significantly affect the speed of sound.

2.3.3 Bubbly liquid at low frequencies

Also the presence of air bubbles in water can have a dramatic effect on the speed
of sound ([103, 34]). The speed of sound is by definition determined by the “mass”
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density ρ and the isentropic bulk modulus:

Ks = ρ
(
∂p

∂ρ

)
s

(2.37)

which is a measure for the “stiffness” of the fluid. The speed of sound c, given by:

c = (Ks/ρ)
1
2 (2.38)

increases with increasing stiffness, and decreases with increasing inertia (density
ρ). In a one-dimensional model consisting of a discrete mass M connected by a
spring of constant K , we can understand this behaviour intuitively. This mass-
spring model was used by Newton to derive equation (2.38), except for the fact
that he used the isothermal bulk modulus KT rather than Ks . This resulted in an
error of γ 1/2 in the predicted speed of sound in air which was corrected by Laplace
[205].

A small fraction of air bubbles present in water considerably reduces the bulk mod-
ulus Ks , while at the same time the density ρ is not strongly affected. As the Ks of
the mixture can approach that for pure air, one observes in such mixtures velocities
of sound much lower than in air (or water). The behaviour of air bubbles at high
frequencies involves a possible resonance which we will discuss in chapter 4 and
chapter 6. We now assume that the bubbles are in mechanical equilibrium with the
water, which allows a low frequency approximation. Combining this assumption
with (2.38), following Crighton [34], we derive an expression for the soundspeed
c of the mixture as a function of the volume fraction β of gas in the water. The
density ρ of the mixture is given by:

ρ = (1− β)ρ
 + βρg, (2.39)

where ρ
 and ρg are the liquid and gas densities. If we consider a small change in
pressure dp we obtain:

dρ

dp
= (1− β)dρ


dp
+ β dρg

dp
+ (ρg − ρ
)dβ

dp
(2.40)

where we assume both the gas and the liquid to compress isothermally [34]. If
no gas dissolves in the liquid, so that the mass fraction (βρg/ρ) of gas remains
constant, we have:

ρg
dβ

dp
+ β dρg

dp
− βρg

ρ

dρ

dp
= 0. (2.41)
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26 2 Wave equation, speed of sound, and acoustic energy

Using the notation c2 = dp/dρ, c2
g = dp/dρg and c2


 = dp/dρ
, we find by
elimination of dβ/dp from (2.40) and (2.41):

1

ρc2
= 1− β
ρ
c2




+ β

ρgc2
g

. (2.42)

It is interesting to see that for small values of β the speed of sound c drops dras-
tically from c
 at β = 0 towards a value lower than cg . The minimum speed of
sound occurs at β = 0.5, and at 1 bar we find for example in a water/air mixture
c � 24 m/s! In the case of β not being close to zero or unity, we can use the fact
that ρgc2

g � ρ
c2

 and ρg � ρ
, to approximate (2.42) by:

ρc2 � ρgc2
g

β
, or c2 � ρgc2

g

β(1− β)ρ
 . (2.43)

The gas fraction determines the bulk modulus ρgc2
g/β of the mixture, while the

water determines the density (1−β)ρ
. Hence, we see that the presence of bubbles
around a ship may dramatically affect the sound propagation near the surface. Air
bubbles are also introduced in sea water near the surface by surface waves. The
dynamics of bubbles involving oscillations (see chapter 4 and chapter 6) appear to
induce spectacular dispersion effects [34], which we have ignored here.

2.4 Influence of temperature gradient

In section 2.2 we derived a wave equation (2.17a) for an homogeneous stagnant
medium. We have seen in section 2.3 that the speed of sound in the atmosphere
is expected to vary considerably as a result of temperature gradients. In many
cases, when the acoustic wave length is small compared to the temperature gra-
dient length (distance over which a significant temperature variation occurs) we
can still use the wave equation (2.17a). It is however interesting to derive a wave
equation in the more general case: for a stagnant ideal gas with an arbitrary tem-
perature distribution.

We start from the linearized equations for the conservation of mass, momentum
and energy for a stagnant gas:

∂ρ ′

∂t
+∇·(ρ0v

′) = 0 (2.44a)

ρ0
∂v′

∂t
+∇ p′ = 0 (2.44b)

∂s′

∂t
+ v′ ·∇s0 = 0, (2.44c)
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where ρ0 and s0 vary in space. The constitutive equation for isentropic flow
(Ds/Dt = 0):

Dp

Dt
= c2 Dρ

Dt

can be written as7:

∂p′

∂t
+ v′ ·∇ p0 = c2

0

(∂ρ ′
∂t
+ v′ ·∇ρ0

)
. (2.45)

Combining (2.45) with the continuity equation (2.44a) we find:(∂p′

∂t
+ v′ ·∇ p0

)
+ ρ0c2

0∇·v′ = 0. (2.46)

If we consider temperature gradients over a small height (in a horizontal tube for
example) so that the variation in p0 can be neglected (∇ p0/p0 � ∇T0/T0), we
can approximate (2.46) by:

∇·v′ = − 1

ρ0c2
0

∂p′

∂t
.

Taking the divergence of the momentum conservation law (2.44b) yields:

∂

∂t
(∇·v′)+∇·( 1

ρ0
∇ p′

)
= 0.

By elimination of ∇·v′ we obtain:

∂2 p′

∂t2
− c2

0ρ0∇·
( 1

ρ0
∇ p′

)
= 0. (2.47)

For an ideal gas c2
0 = γ p0/ρ0, and since we assumed p0 to be uniform, we have

that ρ0c2
0, given by:

ρ0c2
0 = γ p0

is a constant so that equation (2.47) can be written in the form:

∂2 p′

∂t2
−∇·(c2

0∇ p′) = 0. (2.48)

7Why do we not use (2.15)?
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This is a rather complex wave equation, since c0 is non-uniform. We will in section
8.6 consider approximate solutions for this equation in the case (∇c0/ω)� 1 and
for large propagation distances. This approximation is called geometrical or ray
acoustics.

It is interesting to note that, unlike in quiescent (i.e. uniform and stagnant) fluids,
the wave equation (2.48) for the pressure fluctuation p′ in a stagnant non-uniform
ideal gas is not valid for the density fluctuations. This is because here the density
fluctuations ρ ′ not only relate to pressure fluctuations but also to convective effects
(2.45). Which acoustic variable is selected to work with is only indifferent in a
quiescent fluid. This will be elaborated further in the discussion on the sources of
sound in section 2.6.

2.5 Influence of mean flow

See also Appendix F. In the presence of a mean flow that satisfies

∇·ρ0v0 = 0, ρ0v0 ·∇v0 = −∇ p0, v0 ·∇s0 = 0, v0 ·∇ p0 = c2
0v0 ·∇ρ0,

the linearized conservation laws, and constitutive equation for isentropic flow, be-
come (without sources):

∂ρ ′

∂t
+ v0 ·∇ρ ′ + v′ ·∇ρ0 + ρ0∇·v′ + ρ ′∇·v0 = 0 (2.49a)

ρ0

(∂v′
∂t
+ v0 ·∇v′ + v′ ·∇v0

)
+ ρ ′v0 ·∇v0 = −∇ p′ (2.49b)

∂s′

∂t
+ v0 ·∇s′ + v′ ·∇s0 = 0. (2.49c)

∂p′

∂t
+ v0 ·∇ p′ + v′ ·∇ p0 = c2

0

(∂ρ ′
∂t
+ v0 ·∇ρ ′ + v′ ·∇ρ0

)
+ c2

0

(
v0 ·∇ρ0

)( p′

p0
− ρ

′

ρ0

)
(2.49d)

A wave equation can only be obtained from these equations if simplifying assump-
tions are introduced. For a uniform medium with uniform flow velocity v0 �= 0 we
obtain ( ∂

∂t
+ v0 ·∇)2

p′ − c2
0∇2 p′ = 0 (2.50)

where
∂

∂t
+ v0 ·∇ denotes a time derivative moving with the mean flow.
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2.6 Sources of sound

2.6.1 Inverse problem and uniqueness of sources

Until now we have focused our attention on the propagation of sound. As starting
point for the derivation of wave equations we have used the linearized equations of
motion and we have assumed that the mass source term m and the external force
density f in (1.1) and (1.2) were absent. Without these restrictions we still can
(under specific conditions) derive a wave equation. The wave equation will now be
non-homogeneous, i.e. it will contain a source term q. For example, we may find
in the absence of mean flow:

∂2 p′

∂t2
− c2

0∇2 p′ = q. (2.51)

Often we will consider situations where the source q is concentrated in a limited
region of space embedded in a stagnant uniform fluid. As we will see later the
acoustic field p′ can formally be determined for a given source distribution q by
means of a Green’s function. This solution p′ is unique. It should be noted that the
so-called inverse problem of determining q from the measurement of p′ outside
the source region does not have a unique solution without at least some additional
information on the structure of the source. This statement is easily verified by the
construction of another sound field, for example [54]: p′ + F , for any smooth
function F that vanishes outside the source region (i.e. F = 0 wherever q = 0),
for example F ∝ q itself! This field is outside the source region exactly equal to
the original field p′. On the other hand, it is not the solution of equation (2.51),
because it satisfies a wave equation with another source:

( ∂2

∂t2
− c2

0∇2
)
(p′ + F) = q + ( ∂2

∂t2
− c2

0∇2
)
F. (2.52)

In general this source is not equal to q. This proves that the measurement of the
acoustic field outside the source region is not sufficient to determine the source
uniquely [42].

2.6.2 Mass and momentum injection

As a first example of a non-homogeneous wave equation we consider the effect
of the mass source term m on a uniform stagnant fluid. We further assume that

RienstraHirschberg 19 July 2006 20:00



30 2 Wave equation, speed of sound, and acoustic energy

a linear approximation is valid. Consider the inhomogeneous equation of mass
conservation

∂

∂t
ρ +∇·(ρv) = m (2.53)

and a linearized form of the equation of momentum conservation

∂

∂t
(ρv)+∇ p′ = f . (2.54)

The source m consists of mass of density ρm of volume fraction β = β(x, t)
injected at a rate

m = ∂

∂t
(βρm). (2.55)

The source region is where β �= 0. Since the injected mass displaces the original
mass ρ f by the same (but negative) amount of volume, the total fluid density is

ρ = βρm + (1− β)ρ f (2.56)

where the injected matter does not mix with the original fluid. Substitute (2.56) in
(2.53) and eliminate βρm

∂

∂t
ρ f +∇·(ρv) = ∂

∂t
(βρ f ). (2.57)

Eliminate ρv from (2.54) and (2.57)

∂2

∂t2
ρ f −∇2 p′ = ∂2

∂t2
(βρ f )−∇· f . (2.58)

If we assume, for simplicity, that p′ = c2
0ρ
′
f everywhere, where ρ ′f is the fluctu-

ating part of ρ f which corresponds to the sound field outside the source region,
then

1

c2
0

∂2

∂t2
p′ − ∇2 p′ = ∂2

∂t2
(βρ f )−∇· f (2.59)

which shows that mass injection is a source of sound, primarily because of the
displacement of a volume fraction β of the original fluid ρ f . Hence injecting mass
with a large density ρm is not necessarily an effective source of sound.

We see from (2.59) that a continuous injection of mass of constant density does
not produce sound, because ∂2βρ f /∂t2 vanishes. In addition, it can be shown in an
analogous way that in linear approximation the presence of a uniform force field
(a uniform gravitational field, for example) does not affect the sound field in a
uniform stagnant fluid.
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2.6.3 Lighthill’s analogy

We now indicate how a wave equation with aerodynamic source terms can be de-
rived. The most famous wave equation of this type is the equation of Lighthill.

The notion of “analogy” refers here to the idea of representing a complex fluid me-
chanical process that acts as an acoustic source by an acoustically equivalent source
term. For example, one may model a clarinet as an idealized resonator formed by
a closed pipe, with the effect of the flow through the mouth piece represented by
a mass source at one end. In that particular case we express by this analogy the
fact that the internal acoustic field of the clarinet is dominated by a standing wave
corresponding to a resonance of the (ideal) resonator.

While Lighthill’s equation is formally exact (i.e. derived without approximation
from the Navier-Stokes equations), it is only useful when we consider the case of
a limited source region embedded in a uniform stagnant fluid. At least we assume
that the listener which detects the acoustic field at a point x at time t is surrounded
by a uniform stagnant fluid characterized by a speed of sound c0. Hence the acous-
tic field at the listener should accurately be described by the wave equation:

∂2ρ ′

∂t2
− c2

0∇2ρ ′ = 0 (2.17b)

where we have chosen ρ ′ as the acoustic variable as this will appear to be the
most convenient choice for problems like the prediction of sound produced by
turbulence. The key idea of the so-called “aero-acoustic analogy” of Lighthill is
that we now derive from the exact equations of motion a non-homogeneous wave
equation with the propagation part as given by (2.17b). Hence the uniform stagnant
fluid with sound speed c0, density ρ0 and pressure p0 at the listener’s location is
assumed to extend into the entire space, and any departure from the “ideal” acoustic
behaviour predicted by (2.17b) is equivalent to a source of sound for the observer
[107, 108, 161, 71].

By taking the time derivative of the mass conservation law (1.1) and eliminating
∂m/∂t as in (2.57) we find:

∂2

∂t∂xi
(ρvi) = ∂m

∂t
− ∂

2ρ

∂t2
= −∂

2ρ f

∂t2
+ ∂

2βρ f

∂t2
. (2.60)

By taking the divergence of the momentum conservation law (1.2) we find:

∂2

∂t∂xi
(ρvi) = − ∂2

∂xi∂x j
(Pij + ρviv j )+ ∂ fi

∂xi
. (2.61)
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Hence we find from (2.60) and (2.61) the exact relation:

∂2ρ f

∂t2
= ∂2

∂xi∂x j
(Pij + ρviv j )+ ∂

2βρ f

∂t2
− ∂ fi

∂xi
. (2.62)

Because ρ f = ρ0 + ρ ′ where only ρ ′ varies in time we can construct a wave
equation for ρ ′ by subtracting from both sides of (2.61) a term c2

0(∂
2ρ ′/∂x2

i ) where
in order to be meaningful c0 is not the local speed of sound but that at the listener’s
location.

In this way we have obtained the famous equation of Lighthill:

∂2ρ ′

∂t2
− c2

0
∂2ρ ′

∂x2
i

= ∂2Tij

∂xi∂x j
+ ∂

2βρ f

∂t2
− ∂ fi

∂xi
(2.63)

where Lighthill’s stress tensor Tij is defined by:

Tij = Pij + ρviv j − (c2
0ρ
′ + p0)δi j . (2.64)

We used

c2
0
∂2ρ ′

∂x2
i

= ∂
2(c2

0ρ
′δi j )

∂xi∂x j
(2.65)

which is exact because c0 is a constant. Making use of definition (1.3) we can also
write:

Tij = ρviv j − τi j + (p′ − c2
0ρ
′)δi j (2.66)

which is the usual form in the literature8. In equation (2.66) we distinguish three
basic aero-acoustic processes which result in sources of sound:

– the non-linear convective forces described by the Reynolds stress tensor
ρviv j ,

– the viscous forces τi j ,
– the deviation from a uniform sound velocity c0 or the deviation from an isen-

tropic behaviour (p′ − c2
0ρ
′).

8The perturbations are defined as the deviation from the uniform reference state (ρ0, p0): ρ
′ =

ρ − ρ0, and p′ = p − p0.
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As no approximations have been made, equation (2.63) is exact and not easier to
solve than the original equations of motion. In fact, we have used four equations:
the mass conservation and the three components of the momentum conservation to
derive a single equation. We are therefore certainly not closer to a solution unless
we introduce some additional simplifying assumptions.

The usefulness of (2.63) is that we can introduce some crude simplifications which
yield an order of magnitude estimate for ρ ′. Such estimation procedure is based on
the physical interpretation of the source term. However, a key step of Lighthill’s
analysis is to delay this physical interpretation until an integral equation formula-
tion of (2.63) has been obtained. This is an efficient approach because an order of
magnitude estimate of ∂2Tij/∂xi∂x j involves the estimation of spatial derivatives
which is very difficult, while, as we will see, in an integral formulation we will
need only an estimate for an average value of Tij in order to obtain some relevant
information on the acoustic field.

This crucial step was not recognized before the original papers of Lighthill [107,
108]. For a given experimental or numerical set of data on the flow field in the
source region, the integral formulation of Lighthill’s analogy often provides a max-
imum amount of information about the generated acoustic field.

Unlike in the propagation in a uniform fluid the choice of the acoustic variable
appeared already in the presence of a temperature gradient (section 2.4) to affect
the character of the wave equation. If we derive a wave equation for p′ instead of
ρ ′, the structure of the source terms will be different. In some cases it appears to
be more convenient to use p′ instead of ρ ′. This is the case when unsteady heat
release occurs such as in combustion problems. Starting from equation (2.62) in
the form:

∂2 p

∂x2
i

= ∂
2ρ

∂t2
+ ∂2

∂xi∂x j
(τi j − ρviv j )

where we assumed that m = 0 and f = 0, we find by subtraction of c−2
0 (∂

2/∂t2)p′
on both sides:

1

c2
0

∂2 p′

∂t2
− ∂

2 p′

∂x2
i

= ∂2

∂xi∂x j
(ρviv j − τi j )+ ∂

2 p0

∂x2
i

+ ∂2

∂t2

( p′

c2
0

− ρ ′
)

(2.67)

where the term ∂2 p0/∂x2
i vanishes because p0 is a constant.

Comparing (2.63) with (2.67) shows that the deviation from an isentropic behav-
iour leads to a source term of the type (∂2/∂x2

i )(p
′ − c2

0ρ
′) when we choose ρ ′ as

the acoustic variable, while we find a term (∂2/∂t2)(p′/c2
0−ρ ′)when we choose p′
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34 2 Wave equation, speed of sound, and acoustic energy

as the acoustic variable. Hence ρ ′ is more appropriate to describe the sound genera-
tion due to non-uniformity as for example the so-called acoustic “Bremsstrahlung”
produced by the acceleration of a fluid particle with an entropy different from the
main flow. The sound production by unsteady heat transfer or combustion is easier
to describe in terms of p′ (Howe [71]).

We see that (∂/∂t)(p′/c2
0 − ρ ′) acts as a mass source term m, which is intuitively

more easily understood (Crighton et al. [34]) when using the thermodynamic rela-
tion (1.11) applied to a moving particle:

Dp

Dt
= c2 Dρ

Dt
+
(
∂p

∂s

)
ρ

Ds

Dt
. (1.11)

We find from (1.11) that:

D

Dt

(
p′

c2
0

− ρ ′
)
=
(

c2

c2
0

− 1

)
Dρ ′

Dt
+ ρ

2

c2
0

(
∂T

∂ρ

)
s

Ds′

Dt
(2.68)

where we made use of the thermodynamic relation:(
∂p

∂s

)
ρ

= ρ2

(
∂T

∂ρ

)
s

(2.69)

derived from the fundamental law of thermodynamics (1.7) in the form:

de = T ds − p d(ρ−1). (1.7)

As a final result, using the mass conservation law, we find

−∂
2ρe

∂t2
= ∂

∂t

[(
c2

c2
0

− 1+ ρe

ρ

)
Dρ ′

Dt
+ ρ

2

c2
0

(
∂T

∂ρ

)
s

Ds′

Dt
+ ∇·(vρe)

]
(2.70)

where the “excess density” ρe is defined as:

ρe = ρ ′ − p′

c2
0

.

In a free jet the first term in −∂2ρe/∂t2 vanishes for an ideal gas with constant heat
capacity (because c2/c2

0 − 1 + ρe/ρ = 0). We see that sound is produced both
by spatial density variations ∇·(vρe) and as a result of non-isentropic processes
(ρ2/c2

0)(∂T/∂ρ)s(Ds′/Dt), like combustion.
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2.6.4 Vortex sound

While Lighthill’s analogy is very convenient for obtaining order of magnitude es-
timates of the sound produced by various processes, this formulation is not very
convenient when one considers the sound production by a flow which is, on its turn,
influenced by the acoustic field. In Lighthill’s procedure the flow is assumed9 to
be known, with any feedback from the acoustic field to the flow somehow already
included. When such a feedback is significant, and in general for homentropic low
Mach number flow, the aerodynamic formulation of Powell [161], Howe [71] and
Doak [41] based on the concept of vortex sound is most appropriate. This is due to
the fact that the vorticity ω = ∇×v is a very convenient quantity to describe a low
Mach number flow.

Considering a homentropic non-conductive frictionless fluid, we start our deriva-
tion of a wave equation from Euler’s equation in Crocco’s form:

∂v

∂t
+∇B = −ω×v (1.30)

where B = i + 1
2v

2, and the continuity equation:

1

ρ

Dρ

Dt
= −∇·v. (1.17)

Taking the divergence of (1.30) and the time derivative of (1.17) we obtain by
subtraction:

∂

∂t

(
1

ρ

Dρ

Dt

)
− ∇2 B = ∇·(ω×v). (2.71)

As the entropy is constant (ds = 0) we have, with (1.11) and (1.27):

∂

∂t

(
1

c2

Di

Dt

)
−∇2 B = ∇·(ω×v). (2.72)

This can be rewritten as

1

c2

D2
0 B ′

Dt
−∇2 B ′ = ∇·(ω×v)+ 1

c2

D2
0 B ′

Dt
− ∂

∂t

(
1

c2

Di

Dt

)
(2.73)

9This is not a necessary condition for the use of Lighthill’s analogy. It is the commonly used
procedure in which we derive information on the acoustic field from data on the flow in the source
region.
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where B ′ = B − B0 and D0
Dt = ∂

∂t + U0 ·∇. For the reference flow U0 we choose a
potential flow with stagnation enthalpy B0.

At low Mach number M = v/c0 we have the inhomogeneous wave equation:

1

c2
0

D2
0 B ′

Dt2
−∇2 B ′ = ∇·(ω×v) (2.74)

which explicitly stresses the fact that the vorticity ω is responsible for the genera-
tion of sound. (Note: i ′ = p′/ρ0 and B ′ = i ′ + v0 ·v′.) Some of the implications
of (2.74) will be considered in more detail in the next section. The use of a vor-
tex sound formulation is particularly powerful when a simplified vortex model is
available for the flow considered. Examples of such flows are discussed by Howe
[71], Disselhorst & van Wijngaarden [40], Peters & Hirschberg [155], and Howe
[76].

In free space for a compact source region Powell [160] has derived this analogy di-
rectly from Lighthill’s analogy. The result is that the Coriolis force f c = ρ0(ω×v)
appears to act as an external force on the acoustic field. Considering Crocco’s equa-
tion (1.30) with this interpretation Howe [72, 75] realized that the natural reference
of the analogy is a potential flow rather than the quiescent fluid of Lighthill’s anal-
ogy. There is then no need to assume free field conditions nor a compact source
region. Howe [71] therefore proposes to define the acoustic field as the unsteady
scalar potential flow component of the flow:

ua = ∇ϕ′

where ϕ′ = ϕ − ϕ0 and ϕ0 is the steady scalar potential.

At high Mach numbers, when the source is not compact, both Lighthill’s and
Howe’s analogy become less convenient. Alternative formulations have been pro-
posed and are still being studied [136].

2.7 Acoustic energy

2.7.1 Introduction

Acoustic energy is a difficult concept because it involves second order terms in the
perturbations like the kinetic energy density 1

2ρ0v
′2. Historically an energy conser-

vation law was first derived by Kirchhoff for stagnant uniform fluids. He started
from the linearized conservation laws (2.49a–2.49d). Such a procedure is ad-hoc,
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and the result, an energy expression of the approximation, is not an approxima-
tion of the total energy, since a small perturbation expansion of the full non-linear
fluid energy conservation law (1.5) will contain zeroth and first order terms and
potentially relevant second order terms O((ρ ′/ρ0)

2) which are dropped with the
linearization of the mass and momentum equations. However, it appears that for a
quiescent fluid these zeroth, first and neglected second order terms are (in a sense)
not important and an acoustic energy conservation equation may be derived which
is indeed the same as found by Kirchhoff [158].

This approach may be extended to non-uniform flows as long as they are hom-
entropic and irrotational. Things become much less obvious in the presence of a
non-uniform mean flow including entropy variations and vorticity. If required, the
zeroth, first and neglected second order terms of the expansion may still be ig-
nored, as Myers showed [138], but now at the expense of a resulting energy equa-
tion which is not a conservation law any more. The only way to obtain some kind
of acoustic energy conservation equation (implying definitions for acoustic energy
density and flux) is to redirect certain parts to the “right hand side” to become
source or sink terms. In such a case the question of definition, in particular which
part of the field is to be called acoustic, is essential and until now it remains subject
of discussion.

As stated before, we will consider as acoustical only that part of the field which is
related to density variations and an unsteady (irrotational) potential flow. Pressure
fluctuations related to vorticity, which do not propagate, are often referred to in
the literature as “pseudo sound”. In contrast to this approach Jenvey [86] calls any
pressure fluctuations “acoustic”, which of course results in a different definition of
acoustic energy.

The foregoing approach of generalized expressions for acoustic energy for hom-
entropic [138] and more general nonuniform flows [139, 140] by expanding the
energy equation for small perturbations is due to Myers. We will start our analysis
with Kirchhoff’s equation for an inviscid non-conducting fluid, and extend the re-
sults to those obtained by Myers. Finally we will consider a relationship between
vorticity and sound generation in a homentropic uniform inviscid non-conducting
fluid at low Mach numbers, derived by Howe [72].
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38 2 Wave equation, speed of sound, and acoustic energy

2.7.2 Kirchhoff’s equation for quiescent fluids

We start from the linearized mass and momentum conservation laws for a quiescent
inviscid and non-conducting fluid:

∂ρ ′

∂t
+ ρ0∇·v′ = m ′, (2.75a)

ρ0
∂v′

∂t
+∇ p′ = f ′, (2.75b)

where we assumed that f ′ and m ′ are of acoustic order. Since we assumed the
mean flow to be quiescent and uniform there is no mean mass source (m0 = 0) or
force ( f 0 = 0). From the assumption of homentropy (ds = 0) we have10

p′ = c2
0ρ
′. (2.15)

After multiplying (2.75a) by p′/ρ0 and (2.75b) by v′, adding the two equations,
and utilizing the foregoing relation (2.15) between density and pressure, we obtain
the equation

1

2ρ0c2
0

∂p′2

∂t
+ 1

2
ρ0
∂v′2

∂t
+∇·(p′v′) = p′m ′

ρ0
+ v′ · f ′ (2.76)

which can be interpreted as a conservation law for the acoustic energy

∂E

∂t
+∇· I = −D (2.77)

if we DEFINE the acoustic energy density E , the energy flux or intensity11 I and
the dissipation D as:

E = p′2

2ρ0c2
0

+ ρ0v
′2

2
, (2.78a)

I = p′v′, (2.78b)

D = − p′m ′

ρ0
− v′ · f ′. (2.78c)

10Note that in order to keep equation (2.15) valid we have implicitly assumed that the injected
mass corresponding to m′ has the same thermodynamic properties as the original fluid. The flow
would otherwise not be homentropic! In this case m′/ρ0 corresponds to the injected volume fraction
β of equation (2.55).

11There is no uniformity in the nomenclature. Some authors define the acoustic intensity as the
acoustic energy flux, others as the time-averaged acoustic energy flux.

RienstraHirschberg 19 July 2006 20:00



2.7 Acoustic energy 39

In integral form this conservation law (2.77) can be written for a fixed control
volume V enclosed by a surface S with outer normal n as

d

dt

∫∫∫
V

E dx +
∫∫
S

I ·n dσ = −
∫∫∫

V

D dx, (2.79)

where we have used the theorem of Gauss to transform
∫∫∫ ∇· I dx into a surface

integral. For a periodic acoustic field the average 〈E〉 of the acoustic energy over a
period is constant. Hence we find

P =
∫∫
S

〈I ·n〉 dσ = −
∫∫∫

V

〈D〉 dx, (2.80)

where P is the acoustic power flow across the volume surface S. The left-hand side
of (2.80) simply corresponds with the mechanical work performed by the volume
injection (m ′/ρ0) and the external force field f ′ on the acoustic field. This formula
is useful because we can consider the effect of the movement of solid boundaries
like a piston or a propeller represented by source terms m ′ and f ′. We will at the
end of this chapter use formula (2.80) to calculate the acoustic power generated by
a compact vorticity field.

We will now derive the acoustic energy equation starting from the original non-
linear energy conservation law (1.5). We consider the perturbation of a uniform
quiescent fluid without mass source term (v0 = 0, m = 0, f0 = 0, p0 and ρ0

constant). We start with equation (1.5) in standard conservation form:

∂

∂t

(
ρe + 1

2
ρv2

)
+∇·(v(ρe + 1

2
ρv2 + p

)) =
− ∇·q + ∇·(τ ·v) + f ·v, (2.81)

where we note that the total fluid energy density is

Etot = ρe + 1

2
ρv2, (2.82a)

and the total fluid energy flux is

I tot = v(ρe + 1

2
ρv2 + p). (2.82b)

We have dropped here the mass source term m because, in contrast to the force
density f , it does not correspond to any physical process.
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For future reference we state here some related forms, a.o. related to the entropy
variation of the fluid. Using the continuity equation we obtain

ρ
D

Dt

(
e + v

2

2

)
= −∇·(pv)−∇·q +∇·(τ ·v)+ f ·v, (2.83)

which by using the fundamental law of thermodynamics (1.7) may yield an equa-
tion for the change in entropy s of the fluid:

ρT
Ds

Dt
− p

ρ

Dρ

Dt
+ ρ

2

Dv2

Dt
= −∇·(pv)−∇·q +∇·(τ ·v)+ f ·v. (2.84)

By subtraction of the inner product of the momentum conservation equation with
the velocity, this may be further recast into

ρT
Ds

Dt
= −∇·q + τ :∇v. (2.85)

In the absence of friction (τ = 0) and heat conduction (q = 0) we have the
following equations for energy and entropy:

ρ
D

Dt

(
e + 1

2
v2
)
= −∇·(pv)+ f ·v (2.86)

Ds

Dt
= 0. (2.87)

We return to the energy equation in standard conservation form, without friction
and heat conduction:

∂

∂t

(
ρe + 1

2
ρv2

)
+∇·(v(ρe + 1

2
ρv2 + p)

)
= v · f . (2.88)

From the fundamental law of thermodynamics (1.7):

T ds = de + p d(ρ−1) (1.7)

we have for isentropic perturbations:

(
∂e

∂ρ

)
s

= p

ρ2
, and so(

∂ρe

∂ρ

)
s

= e + p

ρ
= i,

(
∂2ρe

∂ρ2

)
s

= 1

ρ

(
∂p

∂ρ

)
s

= c2

ρ
,

where i is the enthalpy (1.26) or heat function. We can now expand the total energy
density, energy flux and source for acoustic (i.e. isentropic) perturbations up to
second order, to find (v0 = 0):

ρe + 1
2ρv

2 = ρ0e0 + i0ρ
′ + 1

2ρ0c0
2
(ρ ′
ρ0

)2 + 1
2ρ0v

′2, (2.89a)

v(ρe + 1
2ρv

2 + p) = v′(i0ρ0 + i0ρ
′ + p′), (2.89b)

v · f = v′ · f ′. (2.89c)
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Noting that the steady state is constant, and using the equation of mass conservation

∂ρ ′

∂t
+∇·(ρ0v

′ + ρ ′v′) = 0

in (2.88), with (2.89a–2.89c) substituted in it, we find that the zeroth and first order
terms in ρ ′/ρ0 vanish so that (2.88) becomes within an accuracy of O((ρ ′/ρ0)

3):

∂

∂t

( p′2

2ρ0c2
0

+ ρ0v
′2

2

)
+∇·(p′v′) = v′ · f ′, (2.90)

which demonstrates that Kirchhoff’s acoustic energy conservation law (2.77) is not
only an energy-like relation of the approximate equations, but indeed also the con-
sistent acoustic approximation of the energy equation of the full fluid mechanical
problem.

2.7.3 Acoustic energy in a non-uniform flow

The method of Myers [138] to develop a more general acoustic energy conservation
law follows similar lines as the discussion of the previous section. We consider a
homentropic flow (ds = 0, so that de = (p/ρ2)dρ) with v0 �= 0. In this case the
total enthalpy B = e+ p/ρ + 1

2v
2 appears to be a convenient variable. In terms of

B the energy conservation law (2.88) becomes:

∂

∂t
(ρB − p)+∇·(ρBv) = v · f . (2.91)

The momentum conservation law in Crocco’s form (1.30) also involves B:

∂v

∂t
+∇B + ω×v = f /ρ. (2.92)

By subtracting ρ0v0 times the momentum conservation law (2.92) plus B0 times the
continuity equation (1.17) from the energy conservation law (2.91), substituting the
steady state momentum conservation law:

∇B0 + ω0×v0 = f 0/ρ0, (2.93)

subtracting the steady state limit of the resulting equation, and using the vector
identity v ·(ω×v) = 0, Myers obtained the following energy corollary:

∂E∗

∂t
+∇· I∗ = −D∗ (2.94)
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where E∗, I∗ and D∗ are defined by:

E∗ = ρ(B − B0)− (p − p0)− ρ0v0 ·(v − v0) (2.95a)

I∗ = (ρv − ρ0v0)(B − B0) (2.95b)

D∗ = (ρv − ρ0v0)·(ω×v − ω0×v0)− (v − v0)·( f − f 0)

− (1− ρ0/ρ)v0 · f − (1− ρ/ρ0)v · f 0. (2.95c)

These auxiliary quantities E∗, I∗ and D∗ have the important property, as Myers
showed, that their zeroth and first order terms in the acoustic perturbation expan-
sion in (ρ ′/ρ0) vanish, while the quadratic terms are only a function of the mean
flow and acoustic (first order) quantities. As a result, the second order approxima-
tion of the exact quantities E∗, I∗ and D∗ yield (for homentropic flow) a general
acoustic energy definition12:

E = c2
0ρ
′2

2ρ0
+ ρ0v

′2

2
+ ρ ′v0 ·v′ (2.96a)

I = (ρ0v
′ + ρ ′v0)

(c2
0ρ
′

ρ0
+ v0 ·v′

)
(2.96b)

D = −ρ0v0 ·(ω′×v′)− ρ ′v′ ·(ω0×v0)

− (v′ + ρ ′v0/ρ0)·( f ′ − ρ ′ f 0/ρ0). (2.96c)

This equation is identical to the acoustic energy conservation law derived by Gold-
stein [60] starting from the linearized equations of motion (with f 0 = 0). It is im-
portant to note that, on the one hand, we have indeed obtained expressions entirely
in first order quantities; on the other hand, however, these expressions represent
only an acoustic energy conservation law if we adopt the definition that vorticity is
non-acoustic and embodies possible acoustic sources or sinks. The present expres-
sions for homentropic flow are further generalized by Myers in recent papers [139]
and [140].

2.7.4 Acoustic energy and vortex sound

Averaging (2.94) over one period for a periodic acoustic field and integrating over
space yields, if f = 0:

P =
∫∫
S

〈I ·n〉 dσ = −
∫∫∫

V

〈ρ0v0 ·(ω′×v′)+ ρ ′v′ ·(ω0×v0)〉 dx (2.97)

12Use the vector identity a·(b×c) = −c·(b×a).
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where P is the acoustic power generated by the flow. It is interesting to compare
this expression with the one derived by Howe [72] for a low Mach number compact
vorticity distribution ω in free space in the presence of compact solid surfaces:

P = −
∫∫∫

V

ρ0〈(ω×v)·ua〉 dx (2.98)

where ua is the acoustic velocity defined as the part of the unsteady velocity field
v′ which is the gradient of a potential (irrotational ∇×ua = 0). While (2.97) is not
restricted to low Mach numbers it only allows small time dependent perturbations
ω′ of the time average vorticity ω0 and in this sense is more restrictive than Howe’s
formula. Furthermore, (2.97) is difficult to interpret physically because v′ includes
the solenoidal velocity perturbations ω′ = ∇×v′.
Howe’s equation (2.98) has a simple physical interpretation which in the same way
as Lighthill’s theory can be called an aero-acoustic analogy (vortex sound). In the
absence of vorticity the flow of an inviscid and non-conducting fluid is described
by Bernoulli’s equation (1.31b):

∂ϕ

∂t
+ B = 0. (1.31b)

If in the same way as in Lighthill’s analogy13 we extend the potential flow v = ∇ϕ
in a region where vorticity is present (ω �= 0) then we can think of the vorticity
term (ω×v) in Crocco’s equation:

∂v

∂t
+∇B = −ω×v (1.28)

equivalent to an external force field f acting on the potential flow (acoustic field).
Hence we have:

f = −ρ(ω×v) (2.99)

which is the density of the Coriolis force acting on the fluid particle as a result
of the fluid rotation. For a compact region at low Mach numbers we can neglect
density variation and use the approximation:

f = −ρ0(ω×v). (2.100)

13In Lighthill’s analogy the uniform quiescent fluid at the listener is extended into the source
region.
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In the absence of mean flow outside the source region we see by application of
the integral form of Kirchhoff’s energy equation (2.80) that we recover Howe’s
formula (2.98):

P =
∫∫∫

V

〈 f ·ua〉 dx. (2.101)

This could also have been deduced from a comparison of the wave equation (2.74)
in which we introduced the approximation B ′ = i ′ = p′/ρ0 because v0 = 0:

1

c2
0

∂2 p′

∂t2
−∇2 p′ = ρ0∇·(ω×v) (2.102)

and the wave equation (2.59) (without mass injection, m = 0):

1

c2
0

∂2 p′

∂t2
−∇2 p′ = −∇· f . (2.103)

This corresponds to Powell’s approximation of the vortex sound theory in which
we neglect terms of order M both in the wave region and in the source region
(B ′ = p′/ρ0).

In the presence of a uniform flow outside the source region, Goldstein [60] finds
the wave equation:

1

c2
0

D2
0 p′

Dt2
−∇2 p′ = −∇· f (2.104)

where

D0

Dt
= ∂

∂t
+ v0 ·∇.

The energy equation corresponding to (2.104) is for f 0 = 0:

P =
∫∫∫

V

〈(
ua + ρ

′

ρ0
v0

)· f
〉

dx (2.105)

which suggests a generalization of Howe’s equation with f = ρ0(ω×v):

P = −ρ0

∫∫∫
V

〈
(ω×v)·(ua + ρ

′

ρ0
v0

)〉
dx, (2.106)
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which corresponds with the use of B ′ = p′/ρ0+ ua ·v0 as acoustical variable, and
I = B ′(ρv)′ as the intensity with (ρv)′ = ρ0ua+ρ ′v0 the fluctuation of mass flux.

This generalization of Howe’s equation is indeed derived by Jenvey [86]. Although
the above discussion provides an intuitive interpretation of Jenvey’s result, it is not
obvious that Jenvey’s definition of acoustic field agrees with Howe’s definition.
The range of validity of this energy corollary is therefore not obvious.

In practice Howe’s energy corollary is convenient because it is formulated by an
integral. Similar to Lighthill’s analogy in integral form, it is not sensitive to “ran-
dom errors” in the model. Integration over the volume and averaging over a period
of oscillation smooths out such errors.

Exercises

a) Calculate the minimum speed of sound of air/water mixtures at a depth of 100 m
below sea surface. Assume a temperature T0 = 300 K. Is it true that this speed of
sound is independent of the gas as long as γ = Cp/CV is the same?

b) Derive (2.91) from (2.88).

c) Is the choice of c0 in the analogy of Lighthill arbitrary?

d) Does the acoustic source ∂2

∂t2 (p
′/c2

0 − ρ′) vanish for isentropic flows?

e) Is the acoustic variable ρ′ the most convenient choice to describe the sound produc-
tion by unsteady combustion at low Mach numbers?

f) Is the definition of acoustic intensity I = p′v′ valid in the presence of a mean flow?

g) Is it correct that when using B ′ as acoustic variable instead of p′, one obtains a more
accurate prediction of vortex sound in a compact region with locally a high Mach
number?

h) Is the equation p′ = c2
0ρ
′ always valid in a stagnant fluid?

i) Is it correct that the acoustic impedance ρc of an ideal gas depends only on the
pressure p?
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3 Green’s functions, impedance, and
evanescent waves

3.1 Green’s functions

3.1.1 Integral representations

Using Green’s theorem we can construct an integral equation which combines the
effect of sources, propagation, boundary conditions and initial conditions in a sim-
ple formula. The Green’s function G(x, t|y, τ ) is the pulse response of the wave
equation:

∂2G

∂t2
− c2

0
∂2G

∂x2
i

= δ(x − y)δ(t − τ). (3.1)

Note that the Green’s function is a generalized function! (See Appendix C.) The
pulse δ(x − y)δ(t − τ) is released at the source point y at time τ and G is mea-
sured at the observation point x at time t . The definition of G is further completed
by specifying suitable boundary conditions at a surface S with outer normal n en-
closing the volume V in which x and y are localized:

n·∇G + bG = 0. (3.2)

Furthermore, one usually assumes a causality condition for G that there is no field
other than due to the δ-source:

G(x, t|y, τ ) = 0 and
∂

∂t
G(x, t|y, τ ) = 0 (3.3)

for t < τ . When the boundary conditions defining the Green’s function coincide
with those of the physical problem considered the Green’s function is called a
“tailored” Green’s function. The integral equation is in such a case a convolution
of the source q(y, τ ) with the pulse response G(x, t|y, τ ). Of course, if the source
q is known (and not dependent on the field) this integral equation is at the same
time just the solution of the problem. A tailored Green’s function is, in general, not
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easy to find. It will, therefore, appear that sometimes, for certain specific problems,
the choice of a Green’s function which is not tailored is more convenient.

Before we can discuss this, we have to consider some general properties of Green’s
functions, such as the important reciprocity relation:

G(x, t|y, τ ) = G(y,−τ |x,−t). (3.4)

For the free field this relation follows immediately from symmetry and causality.
In general [130], this property can be derived by starting from the definition of the
two Green’s functions G1 = G(x, t|y1, τ1) and G2 = G(x,−t|y2,−τ2):

∂2G1

∂t2
− c2

0
∂2G1

∂x2
i

= δ(x − y1)δ(t − τ1) (3.5a)

and
∂2G2

∂t2
− c2

0
∂2G2

∂x2
i

= δ(x − y2)δ(t − τ2). (3.5b)

Multiplying (3.5a) by G2 and subtracting (3.5b) multiplied by G1 yields after inte-
gration over x and t in V from t = −∞ until a time t ′ larger than τ1 and τ2:∫ t ′

−∞

∫∫∫
V

{[
G2
∂2G1

∂t2
− G1

∂2G2

∂t2

]
− c2

0

[
G2
∂2G1

∂x2
i

− G1
∂2G2

∂x2
i

]}
dx dt

= G(y1,−τ1|y2,−τ2)− G(y2, τ2|y1, τ1). (3.6)

Partial integration of the left-hand side yields:

∫∫∫
V

[
G2
∂G1

∂t
− G1

∂G2

∂t

]
dx

∣∣∣∣t=t ′

t=−∞

− c2
0

∫ t ′

−∞

∫∫
S

[
G2
∂G1

∂x2
i

− G1
∂G2

∂x2
i

]
ni dσdt = 0 (3.7)

where the first integral vanishes because for t = −∞ both G1 and G2 vanish
because of the causality condition (3.3). At t = t ′ the first integral vanishes because
−t ′ is earlier than −τ2 (t ′ > τ2) and therefore both G2 = G(x,−t ′|y2,−τ2) = 0
and ∂G2/∂t|t=t ′ = 0 because of causality. The second integral vanishes because
G1 and G2 satisfy the same boundary conditions on boundary S. Replacing y1 and
τ1 by y and τ and y2 and τ2 by x and t in the right-hand side of (3.6) yields (3.4).
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48 3 Green’s functions, impedance, and evanescent waves

We now will prove that the Green’s function G(x, t|y, τ ) also satisfies the equa-
tion:

∂2G

∂τ 2
− c2

0
∂2G

∂y2
i

= δ(x − y)δ(t − τ). (3.8)

We first note that because of the symmetry of δ(t − τ) the time-reversed function
G(x,−t|y,−τ) satisfies (3.1):

∂2

∂t2
G(x,−t|y,−τ)− c2

0
∂2

∂x2
i

G(x,−t|y,−τ) = δ(x − y)δ(t − τ). (3.9)

Using now the reciprocity relation (3.4) and interchanging the notation x ↔ y and
t ↔ τ we find (3.8).

We have now all that is necessary to obtain a formal solution to the wave equation:

∂2ρ ′

∂τ 2
− c2

0
∂2ρ ′

∂y2
i

= q(y, τ ). (3.10)

After subtracting equation 3.8, multiplied by ρ ′(y, τ ), from equation (3.10), mul-
tiplied by G(x, t|y, τ ), and then integration to y over V and to τ between +t0 and
t , we obtain:

ρ ′(x, t) =
∫ t+

t0

∫∫∫
V

q(y, τ )G(x, t|y, τ ) d ydτ

+
∫ t+

t0

∫∫∫
V

[
ρ ′(y, τ )

∂2G

∂τ 2
− G

∂2ρ ′(y, τ )
∂τ 2

]
d ydτ

− c2
0

∫ t+

t0

∫∫∫
V

[
ρ ′(y, τ )

∂2G

∂y2
i

− G
∂2ρ ′(y, τ )
∂y2

i

]
d ydτ. (3.11)

Partial integration over the time of the second integral and over the space of the
third integral in the right-hand side of (3.11) yields:

ρ ′(x, t) =
∫ t

t0

∫∫∫
V

q(y, τ )G(x, t|y, τ ) d ydτ
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− c2
0

∫ t

t0

∫∫
S

[
ρ ′(y, τ )

∂G

∂yi
− G

∂ρ ′(y, τ )
∂yi

]
ni dσdτ

−
∫∫∫

V

[
ρ ′(y, τ )

∂G

∂τ
− G

∂ρ ′(y, τ )
∂τ

]
d y


τ=t0

(3.12)

where the second integral vanishes for a tailored Green’s function and the third in-
tegral represents the effect of the initial conditions at τ = t0. For a tailored Green’s
function, and if t0 = −∞, we have the superposition principle over elementary
sources which we expect intuitively:

ρ ′(x, t) =
∫ t

−∞

∫∫∫
V

q(y, τ )G(x, t|y, τ ) d ydτ. (3.13)

In chapter 4 and 6 we will again reconsider the Green’s functions in more detail.
For the present time we should remember that (3.12) or (3.13) is only an explicit
solution of the wave equation if q is given. When the sound source q depends on
the acoustic field ρ ′ these equations are integral equations rather than an explicit
solution.

Even in such a case the integral representation is useful because we have split up
the problem into a purely linear problem of finding a Green’s function and a second
problem of solving an integral equation. Also as stated earlier the integral equation
is most convenient for introducing approximations because integration tends to
smooth out the errors of the approximations.

The treatment given here is taken from the textbook of Morse and Feshbach [130].
An integral formula for the convective wave equation (2.50) and the corresponding
Green’s function and integral formulation are found in Goldstein [60].

3.1.2 Remarks on finding Green’s functions

In general, a (tailored) Green’s function is only marginally easier to find than the
full solution of an inhomogeneous linear partial differential equation. Therefore,
it is not possible to give a general recipe how to find a Green’s function for a
given problem. Sometimes an expansion in eigenfunction or modes (like in duct
acoustics; see chapter 7) is possible.
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50 3 Green’s functions, impedance, and evanescent waves

It is, however, important to note that very often we can simplify a problem already,
for example by integral representations as above, by using free field Green’s func-
tions, i.e. the Green’s function of the problem without the usually complicating
boundaries. If the medium is uniform in all directions, the only independent vari-
ables are the distance to the source |x − y| and time lag t − τ . Furthermore, the
delta-function source may be rendered into a more easily treated form by spatial
Fourier transformation. Examples are given in Appendix C.2.7 and section 4.6,
while a table is given in Appendix E.

3.2 Acoustic impedance

A useful quantity in acoustics is impedance. It is a measure of the amount by
which the motion induced by a pressure applied to a surface is impeded. Or in
other words: a measure of the lumpiness of the surface. Since frictional forces are,
by and large, proportional to velocity, a natural choice for this measure is the ratio
between pressure and velocity1. A quantity, however, that would vary with time,
and depend on the initial values of the signal is not very interesting. Therefore,
impedance is defined via the Fourier transformed signal as:

Z(x;ω) = p̂(x;ω)
v̂(x;ω)·nS(x)

(3.14)

at a point x on a surface S with unit normal vector nS pointing into2 the surface.
The impedance is a complex number and a function of ω and position. The real part
is called the resistance, the imaginary part is called the reactance, and its inverse
1/Z is called the admittance.

In the most general situation the ratio Z = p̂/(v̂ ·nS) is just a number, with a
limited relevance. We cannot consider the impedance Z as a property of the surface
S, because Z depends also on the acoustic field. However, this is not the case for the
class of so-called locally reacting linear surfaces. The response of such a surface
to an acoustic wave is linear and pointwise, with the result that the impedance is
indeed the same for any solution, and therefore a property of the surface alone.

1In mechanics, impedance denotes originally the ratio between a force amplitude and a velocity
amplitude. In some texts, the ratio acoustic pressure/velocity is therefore called “impedance per area”
or specific impedance. We reserve the nomenclature “specific impedance” to the (dimensionless)
ratio of the impedance and the fluid impedance ρ0c0.

2Note that usually the normal vector of a surface is defined out of the surface.
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3.2 Acoustic impedance 51

Mathematically it is important to note that an impedance boundary condition is of
“mixed type”. Via the general Green’s function representation

p̂ =
∫∫
S

(
p̂∇G + ikρ0c0v̂G

)·nS dσ (3.15a)

the Helmholtz equation reduces to an integral equation in p̂ if surface S has an
impedance Z :

p̂ =
∫∫
S

(
∇G ·nS + ikρ0c0

Z
G
)

p̂ dσ. (3.15b)

Sometimes it is instructive to describe the coupling between two adjacent regions
of an acoustic field by means of an equivalent impedance. Suppose we place be-
tween these regions (say, region 1 and region 2) a fictitious interface, with an im-
pedance such, that the presence of the surface would generate the same sound field
in region 1 as there exists without surface. In that case we could say that the effect
of region 2 onto region 1 is described by this impedance.

For example, a free field plane wave eiωt−ikx , with k = ω/c0 and satisfying iωρ0v+
∇ p = 0, would not be reflected by a screen, positioned parallel to the y, z-plane,
if this screen has the impedance Z = ρ0c0. So for plane waves and in the far field
(where the waves become approximately plane) the fluid may be said to have the
impedance ρ0c0. This inherent impedance of the fluid is used to make Z dimen-
sionless leading to the specific impedance Z/ρ0c0.

Many other examples are found in 1-dimensional (pipe-) models of acoustic sys-
tems where local 3-dimensional behaviour is “packed” in an effective impedance.
It may be worthwhile to note that for such models many authors find it convenient
to divide Z by the surface S of the pipe cross section. In such a case the impedance
is the ratio of the acoustic pressure p̂ and the volume flux (û·n)S leaving the
control volume. The one-dimensional approach then allows the use of all mathe-
matical tools developed for electrical circuits if we assume p̂ to be the equivalent
of the electric voltage, (û·n)S the equivalent of the electric current, and a tube to
correspond to a transmission line. Further, a compact volume is the equivalent of a
capacity, and a compact orifice is a self induction. The pressure difference is in lin-
ear approximation due to the inertia of the air in the orifice and hence proportional
to the acceleration (∂/∂t)(û·n) (section 4.4.3).
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52 3 Green’s functions, impedance, and evanescent waves

3.2.1 Impedance and acoustic energy

For a quiescent fluid the acoustic power flow across a surface S is for a time-
harmonic field (2.80)

P =
∫∫
S

ω

2π

2π/ω∫
0

Re
(

p̂ eiωt
)

Re
(
(v̂ ·nS) eiωt

)
dt dσ

=
∫∫
S

1

4
( p̂v̂∗ + p̂∗v̂)·nS dσ (3.16a)

=
∫∫
S

1

2
Re( p̂∗v̂ ·nS) dσ. (3.16b)

If the surface has an impedance Z this becomes

P =
∫∫
S

1

2
Re(Z)|v̂ ·nS|2 dσ. (3.17)

Hence, the real part of the impedance (the resistance) is related to the energy flow:
if Re(Z) > 0 the surface is passive and absorbs energy, if Re(Z) < 0 it is active
and produces energy.

3.2.2 Impedance and reflection coefficient

If we consider the acoustic field for x < 0 in a tube at low frequencies, we can
write

p(x, t) = p̂(x) eiωt = p+ eiωt−ikx +p− eiωt+ikx (3.18)

where k = ω/c0, p+ is the amplitude of the wave incident at x = 0 from x < 0
and p− is the amplitude of the wave reflected at x = 0 by an impedance Z . Using
the linearized momentum conservation law ρ0(∂v/∂t) = −∂p/∂x we find:

v̂(x) = 1

ρ0c0

(
p+ e−ikx −p− eikx

)
. (3.19)

If we define the reflection coefficient R0 at x = 0 as:

R0 = p−/p+ (3.20)
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we see that because Z = p̂(0)/v̂(0) :

R0 = Z − ρ0c0

Z + ρ0c0
. (3.21)

In two dimensions we have a similar result. Consider a plane wave (amplitude
p+), propagating in the direction (sin θ, cos θ) where θ is the angle with the y-axis
(c.f. Fig. 3.6), and approaching from y < 0 an impedance wall at y = 0. Here it
reflects into a wave (amplitude p−) propagating in the direction (sin θ,− cos θ).
The pressure field is given by

p̂(x, y) = e−ikx sin θ
(

p+ e−iky cos θ +p− eiky cos θ
)
. (3.22)

The y-component of the velocity is

v̂(x, y) = cos θ

ρ0c0
e−ikx sin θ

(
p+ e−iky cos θ −p− eiky cos θ

)
, (3.23)

so we have for the impedance

Z = p̂(x, 0)

v̂(x, 0)
= ρ0c0

cos θ

p+ + p−

p+ − p−
= ρ0c0

cos θ

1+ R0

1− R0
, (3.24)

and for the reflection coefficient

R0 = Z cos θ − ρ0c0

Z cos θ + ρ0c0
. (3.25)

3.2.3 Impedance and causality

In order to obtain a causal solution of a problem defined by boundary conditions
expressed in terms of an impedance Z , the impedance should have a particular
form.

Consider an arbitrary plane wave pi = f (t − x/c0) incident from x < 0, and
reflecting into pr = g(t + x/c0) by an impedance wall at x = 0, with impedance
Z(ω). The total acoustic field is given for x < 0 by:

p(x, t) = f (t − x/c0)+ g(t + x/c0), (3.26a)

v(x, t) = 1

ρ0c0

(
f (t − x/c0)− g(t + x/c0)

)
. (3.26b)
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The reflected wave g is determined via the impedance condition, and therefore via
the Fourier transforms of the p and v. As we have seen above (equation 3.21), we
have for the Fourier transforms f̂ and ĝ:

ĝ(ω) = Z(ω)− ρ0c0

Z(ω)+ ρ0c0
f̂ (ω). (3.27)

More information can be obtained, however, if we transform the boundary condi-
tion back to the time domain

p(0, t) =
∫ ∞
−∞

p̂(0, ω) eiωt dω (3.28a)

=
∫ ∞
−∞

Z(ω)v̂(0, ω) eiωt dω (3.28b)

leading to the convolution product:

p(0, t) = 1

2π

∫ ∞
−∞

z(t − τ)v(0, τ ) dτ (3.29)

where

z(t) =
∫ ∞
−∞

Z(ω) eiωt dω. (3.30)

Since p(0, t) should only depend on the values of v(0, t) of the past (τ < t), the
Fourier transform z(t) of the impedance Z(ω) has to satisfy the causality condition:

z(t) = 0 for t < 0. (3.31)

Of course, the same applies to the admittance 1/Z(ω), when we express v(0, t) in
p(0, t). This requires, under conditions as given in theorem (C.1) (p.302),

Z(ω) and 1/Z(ω) are analytic in Im(ω) < 0. (3.32)

Furthermore, since both p and v are real, z has to be real, which implies that Z has
to satisfy the reality condition:

Z∗(ω) = Z(−ω). (3.33)

Indeed, the mass-spring-damper system, given by

Z(ω) = R + iωm − i K/ω, (3.34)
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satisfies the reality condition if all parameters are real, but is only causal, with zeros
and poles in the upper complex half plane, if all parameters are positive or zero.

Equation (3.29) yields an integral equation for g if we use equations (3.26a) and
(3.26b) to eliminate p and v:

f (t)+ g(t) = 1

2πρ0c0

∫ ∞
−∞

z(t − τ)( f (τ )− g(τ )
)

dτ. (3.35)

For any incident wave starting at some finite time (t = 0) we have f (t) = 0 for
t < 0, so that all in all the infinite integral reduces to an integration over the interval
[0, t]:

f (t)+ g(t) = 1

2πρ0c0

∫ t

0
z(t − τ)( f (τ )− g(τ )

)
dτ. (3.36)

For any time t , g(t) is built up from f (t) and the history of f and g along [0, t].
As an example, consider an impedance wall of Helmholtz resonator type which is
widely used in turbo fan aircraft engine inlets [174]. Such a wall is described (see
next chapter) by:

Z(ω) = ρ0c0

(
R + iωm − i cot

(
ωL
c0

))
. (3.37)

where R,m, L > 0. Note that indeed Z∗(ω) = Z(−ω). If we write ωL
c0
= ξ − iη

and c0m
L = α, then

Re
( Z

ρ0c0

)
= R + αη + coth(η)

1+ cot(ξ)2

cot(ξ)2 + coth(η)2
> 0

for η > 0, so Z is free from zeros in Im(ω) < 0. From the causality condition it
follows that the poles of cotg(ωL

c0
) belong to the upper half of the complex ω-plane.

Hence, we can Fourier transform Z back to the time domain (C.35) to find:

z(t)

2πρ0c0
= Rδ(t)+ mδ′(t)+ δ(t)+ 2

∞∑
n=1

δ
(
t − 2nL

c0

)
(3.38)

where δ′(t) denotes the derivative of δ(t). Substitution of (3.38) in (3.36) shows
that g can be expressed as a finite sum.
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3.2.4 Impedance and surface waves

Part of sound that is scattered by an impedance wall may be confined to a thin layer
near the wall, and behave like a surface wave, similar to the type of evanescent
waves discussed in section 3.3. Examples of these type of solutions are found as
irregular modes in lined ducts (section 7.4), or as sound that propagates with less
than the usual 1/r2-decay along an acoustically coated surface.
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Figure 3.1 Trajectories of α for varying Z = R + i X (no flow).
Fixed R & X = 0:−0.1:−∞ . Fixed X & R = 0:0.1:∞ .

Consider in (x, y)-space, y ≥ 0, a harmonic pressure field p(x, y) eiωt , satisfying

∇2 p + k2 p = 0, with ik p(x, 0) = Z ∂
∂y p(x, 0)

where Z denotes the specific impedance (scaled on ρ0c0) of the wall y = 0, and
k = ω/c0. Suitable solutions are

p(x, y) = A e−(ikαx±ikγ y), γ (α) =
√

1− α2

where α is to be determined. The solutions we are interested in remain restricted
to the wall, which means that ± Im(γ ) ≤ 0. The sign of γ depends of course on
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our definition of the square root. In order to have one and the same expression for
all α, i.e. ∝ e−(ikαx+ikγ y), it is therefore most convenient to select the branch and
branch cuts of γ such that Im(γ ) ≤ 0 everywhere (see equation 3.48 and figure
3.5). From the boundary condition it follows that the only solutions that can occur
have to satisfy

γ (α) = −Z−1.

It follows that the only impedances that may bear a surface wave have to satisfy

Im(Z) ≤ 0.

The complex values of scaled wave number α, corresponding to these solutions,
are given by

α = ±
√

1− Z−2. (3.39)

Trajectories of these wave numbers, as function of Z , are plotted in figure 3.1. To
include all complex values of Z , we have drawn two fan-shaped families of curves:
one for fixed Re(Z) and one for fixed Im(Z). Note that un-attenuated waves occur
for purely imaginary Z . The thickness of the layer occupied by the wave is of the
order y = O(λ| Im(Z)|), where λ = 2π/k, the free field wave length.

3.2.5 Acoustic boundary condition in the presence of mean flow

The boundary condition to describe a vibrating impermeable wall is that the fluid
particles follow the wall motion. In linearized form it is applied at the wall’s mean
or unperturbed position. Without mean flow, the linearized condition simply says
that acoustic and wall’s normal velocity match.

With mean flow the situation is more subtle. Both the actual normal vector and
the mean flow velocity at the actual position differ from the mean values by an
amount of acoustic order, which has to be taken into account. This was recognized
by several authors for various special cases. Myers gave in [137] the most general
formulation, which we will summarize here.

Consider the unsteady surface S(t), which is a perturbation, scaling on a small
parameter ε, of the steady surface S0. Associate to S0 an orthogonal curvilinear
co-ordinate system (α, β, γ ) such that α = 0 corresponds to S0. The mean flow v0

is tangent to the steady surface (section A.3), so

v0 ·∇α = 0 at α = 0.
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Let S(t) be described, to leading order, by

α = εg(β, γ, t)+ O(ε2).

The condition of fluid particles following the surface S(t) becomes

∂

∂t
(α − εg)+ (v0 + εv′)·∇(α − εg) = O(ε2) at α = εg,

where εv′ is the acoustic velocity. The linearization we seek is the acoustic order,
i.e. O(ε) when ε→ 0. This appears to be [137]

v′ ·n = ( ∂
∂t
+ v0 ·∇ − n·(n·∇v0)

) g

|∇α| at α = 0, (3.40)

where n is the normal of S0, directed away from S0 into the fluid.

An important application of this result is an impedance wall (section 3.2) with
inviscid mean flow. This can be found, for example, in the lined inlet duct of a turbo
fan aircraft jet engine. The steady surface S0 coincides with the impedance wall;
the unsteady surface S(t) is the position of a (fictitious) vortex sheet, modelling the
boundary layer.

Since a vortex sheet cannot support a pressure difference, the pressure at the wall
is the same as near the wall in the flow. If the wall has an impedance Z �= 0 for
harmonic perturbations ∼ eiωt (see 3.14), the velocity and therefore the position g
of S(t) is known in terms of the pressure:

g = − 1

iωZ

(
|∇α|p

)
α=0
.

In the mean flow, the impedance wall is now felt as

v′ ·nS =
(

iω + v0 ·∇ − nS ·(nS ·∇v0)
) p

iωZ
at S0. (3.41)

As is usual, the normal vector nS of S0 is now selected to be directed into the wall.
If Z ≡ 0, the boundary condition is just p = 0. For uniform mean flow along a
plane wall (3.41) simplifies to

v′ ·nS =
(

iω + v0 ·∇
) p

iωZ
,

a result, obtained earlier by Ingard [82]. An application of this generalised bound-
ary condition (3.41) may be found in [175, 177].
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Of practical interest are the following observations. As the mean flow field is tan-
gential to the wall, so v0 ·nS = 0, the following simplification may be derived

−nS ·(nS ·∇v0) = v0 ·(nS ·∇nS),

i.e. the expression does not really involve derivatives of v0. (Incidentally, the vector
nS ·∇nS is tangential to the surface.) Furthermore, since ∇·(ρ0v0) = 0, we may
multiply left and right hand side of (3.41) by ρ0 and obtain the form

ρ0v
′ ·nS = ρ0 p

Z
+ (∇ + nS ·∇nS

)·(ρ0v0 p

iωZ

)
. (3.42)

The last part between brackets may be further simplified to the following two forms
(c.f. [125, 48])(∇ + nS ·∇nS

)·(ρ0v0 p

iωZ

) = nS ·∇×(nS×ρ0v0 p

iωZ

)
, (3.43a)

= 1

hσ

∂

∂τ

(
hσ
ρ0v0 p

iωZ

)
, (3.43b)

where v0 = |v0| and a local orthogonal coordinate system (τ, σ, ν) is introduced
associated to the wall. Coordinate ν is related to the wall normal vector n, coordi-
nate τ is the arclength along a streamline of v0, and σ is orthogonal to τ in the wall
surface. hσ is a scale factor of σ , defined by h2

σ = ( ∂∂σ x)2+ ( ∂
∂σ

y)2+ ( ∂
∂σ

z)2. Note
that (3.43b) involves no more than a derivative in streamwise direction.

3.2.6 Surface waves along an impedance wall with mean flow

Consider in (x, y)-space, y ≥ 0, a uniform mean flow in x-direction with Mach
number M , and a harmonic field ∼ eiωt satisfying (see equation 2.50)

(
ik + M

∂

∂x

)2
p − ( ∂2

∂x2
+ ∂2

∂y2

)
p = 0(

ik + M
∂

∂x

)
v +∇ p = 0

where k = ω/c0. Pressure p is made dimensionless on ρ0c2
0 and velocity v on c0.

At y = 0 we have an impedance boundary condition given by (see equation 3.41)

ik Zv = −
(

ik + M
∂

∂x

)
p

where Z denotes the constant specific wall impedance and v the vertical velocity.
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60 3 Green’s functions, impedance, and evanescent waves

Solutions that decay for y →∞ are of the type discussed in section 3.3

p(x, y) = A e−ikαx−ik�y .

From the equations and boundary condition it follows that

(1− αM)2 + �Z = 0, α2 + �2 = (1− αM)2.

For further analysis it is convenient to introduce the Lorentz or Prandtl-Glauert
type transformation (see 7.42 and section 9.1.1),

β =
√

1− M2, σ = M + β2α, γ = β�, γ =
√

1− σ 2 (3.44)

with the branch and branch cuts of γ (σ ) selected such that Im(γ ) ≤ 0 (see equation
3.48 and figure 3.5).

As a result (see [173, 179]) we have the equation for the reduced axial complex
wave number σ as a function of Z

(1− Mσ )2 + β3γ (σ )Z = 0 (3.45)

2Mi

(1− M2)
3
2 (1+ M2 )

1
2

0

4
√

2
(
1+

√
1+ 8M2 ) 1

2(
3+

√
1+ 8M2 ) 3

2

−i 1
2
√

2 M
(
3+

√
1+ 8M2 ) 3

2(
1− M2 ) 3

2
(
1+

√
1+ 8M2 ) 1

2

(
1− M2)− 3

2

Im(Z) = 2M
(
1− M2)− 3

2

I

II
III

IV

V

Figure 3.2 Complex impedance Z-plane, with regions of different numbers of surface waves.
No solutions in I, σH I ∈ II . . . V, σS R ∈ III . . . V, σS L ∈ IV . . . V, σH S ∈ V.
Thick lines map to the branch cuts in figure 3.3. In the figure M = 0.5 is taken.
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i M−1
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Re γ<0

Re γ<0

Re γ>0

Figure 3.3 Complex reduced wave number σ -plane, with regions of existence of surface
waves. Thick lines map to the imaginary Z-axis in figure 3.2 (except for the part
in region I where no solutions exist). In the figure, M = 0.5 is taken.

By squaring we obtain a 4-th order polynomial equation with 4 complex roots.
So in our problem we have at most 4 solutions. To investigate the occurrence of
these solutions, we analyse in detail the behaviour of possible solutions σ along
the branch cuts of γ , because it is there where possible solutions may appear from
or disappear to the second Riemann sheet of γ . From a careful analysis (see [173,
179]) it appears that in the Z -plane there are 5 distinct regions with 0, 1, 2, 3, and
4 solutions σ , while in the σ -plane we can identify an egg-shaped area, of radius
� M−1, inside and outside of which we have 4 regions where solutions σ may
occur. See the figures 3.2, 3.3, and figure 3.4.

Inside the egg we have acoustic surface waves (a right-running σS R and a left-
running σS L). Outside the egg we have hydrodynamic modes (they disappear to
infinity with vanishing Mach number) σH S and σH I , probably both right-running,
such that σH S is decaying (stable) and σH I is increasing (unstable). This unstable
behaviour depends on the frequency-dependence of Z , and can be proven for an
impedance of mass-spring-damper type (3.34) in the incompressible limit [173,
179].

In the limit for hard walls, i.e. for |Z | → ∞ while Im Z < 0, the hydrodynamic
surface waves σH I and σH S disappear to infinity while the acoustic surface waves
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Figure 3.4 Trajectories of σ for varying Z = R + i X and M = 0.5.
Fixed R & X = −∞:0.2:∞ . Fixed X & R = 0:0.2:∞ .

σS R and σS L approach ±1 in the following way

σH I , σH S � ±i
β3

M2
Z , σS R, σS L � ±1∓ (1∓ M)4

2Z2β6
. (3.46)

3.3 Evanescent waves and related behaviour

3.3.1 An important complex square root

The wave equation in 2-D has the very important property that a disturbance of
(positive) frequency ω and (real) wave number α in (say) x-direction is only radi-
ating sound if frequency and wave number satisfy the inequality

|α| < ω/c0
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(a similar inequality holds in 3-D). Outside this regime the generated disturbances
are exponentially decaying (evanescent) in y without an associated sound field.
This is seen as follows.

Consider in the 2-D half space y ≥ 0 the harmonic sound field p(x, y, ω) eiωt

satisfying the Helmholtz equation

∇2 p + k2 p = 0.

where k = ω/c0. If p, generated by (say) the surface y = 0, is given at y = 0 as
the Fourier integral

p(x, 0) = p0(x) =
∫ ∞
−∞

A(α) e−iαx dα,

it is easily verified that the field in y ≥ 0 may be written as

p(x, y) =
∫ ∞
−∞

A(α) e−iαx−iγ y dα (3.47)

with the important square root (with branch cuts along the imaginary axis, and the
real interval |α| ≤ k; see figure 3.5)

γ (α) =
√

k2 − α2, Im(γ ) ≤ 0, γ (0) = k. (3.48)

The complex square root is here defined such that for any complex α the wave
e−iαx−iγ y radiates or decays in positive y-direction. This is not necessary (we could
always invoke the other solution ∼ e+iγ y), but very convenient if complex α’s are
essential in the problem.

If we consider solutions of the Fourier-integral type (3.47), the only α’s to be con-
sidered are real. We see that only that part of p0(x) is radiated into y > 0 which
corresponds to real positive γ , i.e. with |α| < k. The rest decays exponentially
with y, and is undetectable for y → ∞. This near field with |α| > k is essen-
tially of hydrodynamic nature, and becomes just an incompressible flow field for
|α| 
 k. If this is true for all α, including the largest α−1, which scales on the size
of the object, it is equivalent to the condition of compactness (2.25), and shows
that compact sources are acoustically inefficient.

This distinction between radiating acoustic and non-radiating near field has far
reaching implications. We give some examples.
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Im(γ ) = 0
Im(γ ) ≤ 0

everywhere

Re(γ ) = 0

Re(γ ) = 0
Re(γ ) > 0

Re(γ ) > 0
Re(γ ) < 0

branch cut

Re(γ ) < 0

branch cut

α ∈ C

Figure 3.5 Branch cuts and signs of γ =
√

k2 − α2 in complex α-plane.
The definition of γ (α) adopted here is the branch of the multi-valued complex square
root that corresponds to Im(γ ) ≤ 0 for all α. Im(γ ) = 0 along the branch cuts.
γ (α) � −iα sign(Reα) if |α| 
 k,

3.3.2 The Walkman

The low frequencies of a small Walkman headphone are not radiated as sound. We
do, however, detect the pressure when our ear is in the hydrodynamic near field.

3.3.3 Ill-posed inverse problem

Infinitely many boundary conditions are equivalent in the far field. The above
boundary condition p(x, 0) = p0(x) and any other with the same α-spectrum
on [−k, k], for example

p(x, 0) = p̃0(x) =
∫ k

−k
A(α) e−iαx dx

produce the same far field. Therefore, the inverse problem of determining p0 from
a measured far field is very difficult (ill-posed). Fine details, with a spatial structure
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described by |α| > k, are essentially not radiating. Indeed, waves are in general
more scattered by large than by small objects.

3.3.4 Typical plate pitch

If a metal plate is hit by a hammer, bending waves are excited with time- and
space-spectra depending on, say, frequency (ω) and wave number (α) respectively.
However, not all frequencies will be radiated as sound. As seen above, for any α
only the frequencies larger than αc0 are radiated. Now, the smallest α occurring is
by and large determined by the size of the plate (if we ignore fluid-plate coupling),
say 1/L . Therefore, the smallest frequency that is radiated is given by ωmin =
αminc0 = c0/L .

3.3.5 Snell’s law

medium 2

medium 1

interface

θ2

θ1

ci
sin θi incident

wave

reflected
wave

transmitted
wave

Figure 3.6 Reflection and transmission at a discontinuity.

Also the transmission of sound waves across an interface between two media is
most directly described via this notion of sub- and supersonic wave crests. If a
plane wave is incident onto the interface, the point of reflection in medium 1 gen-
erates a disturbance in medium 2 (Fig. 3.6). With soundspeed c1 in medium 1 and
angle3 of incidence ϑ1 the disturbance velocity, measured along the interface, (the

3Traditionally, the angle used is between the propagation direction and the normal vector of the
interface.
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phase speed) is c1/ sinϑ1. Depending on ϑ1 and the ratio of sound speeds c1/c2

this disturbance moves with respect to medium 2 either supersonically, resulting
into transmission of the wave, or subsonically, resulting into so-called total re-
flection (the transmitted wave is exponentially small). In case of transmission the
phase speeds of the incident and transmitted wave has to match (the trace-velocity
matching principle, [158]). This yields immediately Snell’s law ([42, 158]), from
which we can determine the angle θ2 of the transmitted wave with the interface:

sinϑ1

c1
= sin ϑ2

c2
. (3.49)

3.3.6 Silent vorticity

The field of a moving point source may be entirely acoustical, with essentially
no other than convection effects. It is, however, possible, and physically indeed
usual, that a fluctuating moving line force generates a surface or sheet of trailing
vorticity. This vorticity is generated in addition of the acoustic field and is itself also
of acoustic order, but, apart from some coupling effects, silent. Typical examples
are (the trailing edge of) a fluctuating wing, a propeller blade, or a flag pole in
the wind. The amount of generated vorticity is not a priori known but depends
on details of the vortex shedding process (e.g. described by the Kutta condition),
usually not included in an acoustic model. Indeed, this vorticity solution comes into
the problem as an eigensolution as soon as continuity of the potential along mean
flow streamlines is released as condition. A potential discontinuity corresponds to
a vortex sheet.

Although convected vorticity is silent (it exists without pressure fluctuations) its
presence may still be acoustically important. Near a solid surface (typically the
surface from which the vorticity is shed) the velocity corresponding to the free
vorticity cannot exist, as the field has to satisfy the vanishing normal velocity con-
dition. This induces a fluctuating pressure along the surface which radiates out as
sound, apparently from the surface but of course really the vorticity is the source.
Examples are the whistling sound produced by a thin pipe or wire in the wind (aeo-
lian sound), and the trailing edge noise – as far as it is due to shed-vorticity – from
a blunt-edged airfoil. See for example [170].

We will not consider the generation process here in detail, but only indicate the
presence of the eigensolution for a distinct source far upstream.
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Consider in a 2D medium a uniform mean flow (U, 0) with velocity perturbations
∇ϕ and pressure perturbations p small enough for linearization. Bernoulli’s equa-
tion and the mass conservation equation become then

ρ0
∂ϕ

∂t
+ ρ0U

∂ϕ

∂x
+ p = 0, (3.50a)

∂p

∂t
+U

∂p

∂x
+ ρ0c2

0∇2ϕ = 0, (3.50b)

ϕ→ 0 for |y| → ∞. (3.50c)

This may be combined to a wave equation, although the hydrodynamic field is more
easily recognized in the present form4. Possible eigensolutions (solutions without
source) for the free field problem (no solid objects) are given by

p(x, y, t) = 0 (3.51a)

ϕ(x, y, t) = f (x −Ut, y) (3.51b)

∇2 f (x, y) = 0. (3.51c)

for suitable functions f (x, y). A non-trivial solution f decaying both for y →
∞ and y → −∞ is not possible if f is continuous, but if we allow f to be
discontinuous along, say, y = 0 (any surface parallel to the mean flow is possible),
of course under the additional conditions at y = 0 of a continuous pressure p and
continuous vertical velocity ∂ϕ/∂y, then we may find with Fourier transformation

ϕ(x, t) =
∫ ∞
−∞

F(α) sign(y) e−α|y|−iα(x−Ut) dα. (3.52)

This discontinuity relates to a concentrated layer of vorticity (vortex sheet), and is
a typical (hydrodynamic) phenomenon of acoustics with mean flow. The shedding

4Equations (3.50a,3.50b) may be combined to the convected wave equation

c2
0∇2ϕ − (ϕt t + 2Uϕxt +U2ϕx x ) = 0

which reduces under the Prandtl-Glauert transformation (see 7.42) ϕ(x, y, t) = ψ(X, y, T ) with
X = x/β, T = βt + Mx/c0β, M = U/c0, β = √(1 − M2) to the ordinary wave equation for ψ ,
and a pressure given by p = −ρ0(ψT +UψX )/β.

In this way we may obtain from any no-flow solution ψ a solution to the problem with flow.
However, care should be taken.

An integrable singularity in ∇ψ , as would occur at a sharp edge, corresponds without flow to a fi-
nite pressure. With flow it corresponds to a singular pressure (from theψX -term). If this is physically
unacceptable, for example if the edge is a trailing edge and the sound field induces the shedding of
vorticity, a Kutta condition of finite pressure is required and the solution is to be modified to include
the field of the shed vorticity (a discontinuous ϕ).
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of vorticity (on the scale of the linear acoustics) would not occur without mean
flow.

For a harmonic force (for example, a Von Kármán vortex street modelled by an
undulating vortex sheet) with frequency ω we have only one wave number α =
ω/U in the problem:

ϕ(x, t) = F0 sign(y) exp
(

iωt − i
ω

U
x − ω

U
|y|

)
. (3.53)

This important parameter ω/U is called the “hydrodynamic wave number”. To-
gether with a suitable length scale L it yields the dimensionless number ωL/U
called “Strouhal number”.

It may be noted that this hydrodynamic field has an averaged intensity, directed in
x-direction, equal to (note that p ≡ 0)

〈I · ex〉 = 1

2
Uρ0

∣∣∣∂ϕ
∂x

∣∣∣2 = ω2

U 2
|F0|2 e−2 ωU |y| .

The total power output in flow direction is then∫ ∞
−∞
〈I · ex〉 dy = ω

U
|F0|2. (3.54)

In the case of an acoustic field (for example the field that triggered the vortices
associated to the hydrodynamic field) the intensity has a non-zero component in y-
direction, and in addition to the purely hydrodynamic power (3.54) some acoustic
energy disappears into, or appears from, the vortex sheet y = 0 ([105, 170, 75, 62]).

Exercises

a) Consider the sound produced by thunder, modelled as an infinite line source, fired
impulsively. Explain the typical long decay after the initial crack.

b) Consider in (x, y, z)-space the plane z = 0, covered uniformly with point sources
which are all fired instantaneously at t = τ :
δ(t − τ )δ(x− x0)δ(y− y0)δ(z) (z0 = 0). Calculate the sound field at some distance
away from the plane.

c) Consider an infinite equidistant row of harmonically oscillating line sources∑
n δ(x − nd)δ(y) eiωt , placed in the x, z-plane a distance d from each other. Show

that constructive interference in the far field will only occur in directions with an
angle θ such that

kd cos θ = 2πm; m = 0, 1, 2, . . .

where k = ω/c0.
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d) The same question for a row of alternating line sources.

e) What is the dimension of δ(x) if x denotes a physical coordinate with dimension
“length”?

f) Prove the identities (C.37a) and (C.37b).

g) Consider a finite volume V with surface S and outward surface normal n. On V
is defined a smooth vector field v. Prove, by using surface distributions, Gauss’
theorem∫

V
∇·v dx =

∫
S
v·n dσ.

h) Work out the expression (3.36) for the reflected wave g in the case of formula (3.38)
with m = 0.

i) We define an ideal open end as a position at which p̂ = 0 in a tube. Calculate
reflection coefficient R and impedance Z for such an open end.

j) The same question for an ideal closed end defined by v̂ = 0.

k) Given a uniform duct between x = −∞ and x = 0, with impedance Z0 of the plane
x = 0 seen from the x < 0 side. Calculate Z L , the impedance of the plane x = −L,
seen from x < 0.

l) Prove causality of the impedance Z(ω) = R+iωm−i K/ω. Find the inverse Fourier
transform of both Z and Y = 1/Z .
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4 One dimensional acoustics

4.1 Plane waves

Plane waves are waves in which the acoustic field only depends on the spatial co-
ordinate (say: x) in the direction of propagation: p(x, t), ρ(x, t), v(x, t), ... . Such
waves may emerge, for example, as approximations for spheric waves at large dis-
tance from a point source, or as waves propagating at a frequency lower than a
critical frequency fc called the cut-off frequency in a hard-walled pipe. As we will
see from the discussion in section 6.4 and section 7.2 the cut-off frequency fc is of
the order of c0/2d where d is the pipe width (or diameter). The exact value of fc

depends on the shape of the pipe cross section.

If we can neglect friction, then below the cut-off frequency, the (propagating part
of the) acoustic field in a pipe consists only of plane waves. The condition for the
validity of a frictionless approximation yields a lower bound for the frequency we
can consider. At high frequencies, the effect of viscosity is confined to boundary
layers of thickness δA = (2ν/ω)1/2 (where ν = η/ρ is the kinematic viscosity of
the fluid) near the walls. In order to make a plane wave approximation reasonable
we should have thin viscous boundary layers: δA/d � 1. Hence the frequency
range in which a plane wave approximation is valid in a pipe is given by:

2ν

πd2
� f <

c0

2d
.

For air ν = 1.5 × 10−5 m2/s while for water a typical value is ν = 10−6 m2/s.
Hence we see that a plane wave approximation will in air be valid over the three
decades of the audio range for a pipe with a diameter d = O(10−2 m). (Check
what happens for larger pipes.) This implies that such an approximation should
be interesting when studying pulsations in pipe systems, musical acoustics, speech
production, etc.

We therefore focus our attention in this chapter on the one-dimensional approxi-
mation of duct acoustics. For simplicity we will also assume that any mean flow
u0 = u0(x) is also one dimensional. We will consider simple models for the bound-
ary conditions. We will assume that the side walls are rigid. This implies that there
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is no transmission of sound through these walls. This is a drastic assumption which
excludes any application of our theory to the prediction of environmental noise in-
duced by pipe flows. In such cases the transmission of the sound from the internal
flow to the environment is a crucial factor. A large amplitude in the pipe may be
harmless if the acoustic energy stays inside the pipe! Extensive treatment of this
transmission problem is given by Norton [145] and Reethof [168]. In general the
transmission of sound through elastic structures is described in detail by Cremer
and Heckl [28], and Junger and Feit [90]. We further ignore this crucial problem.

In principle the approximation we will use is limited to pipes with uniform cross
sections A or, as we will see in section 8.4, to pipes with slowly varying cross
sections (dA/dx � √

A � λ). The most interesting applications of our ap-
proximation will concern sound generated in compact regions as a result of sud-
den changes in cross section or localized fluid injection. As we consider low fre-
quencies ( f < c0/2d) a region with a length of the order of the pipe width d will
be by definition compact. We will treat these regions separately, taking possible
three dimensional effects into account. The (inner-) solution in the compact region
is approximated by that of an incompressible flow or a region of uniform pressure1.

The boundary conditions for this compact region are related to the plane wave
regions by means of integral conservation laws (Appendix A). In this way we will
consider a large variety of phenomena (temperature discontinuities, jumps in cross
sections, multiple junctions, air bubbles, turbulence...). In the present chapter we
will assume an infinitely long or semi-infinite pipe. This is a pipe which is so long
that as a result of friction the waves travelling towards the pipe end do not induce
significant reflections. This will in fact exclude the accumulation of acoustic energy
and phenomena like resonance. This effect is discussed in the next chapter.

A consequence of this assumption is that the acoustic field will not have a large
amplitude and that we can usually neglect the influence of the acoustic field on a
source. The flow is calculated locally with our previously discussed compact region
approximation ignoring any acoustical feedback. This excludes fascinating effects
such as whistling. These effects will be discussed in chapter 5.

If the end of the pipe is part of the problem, we will include this end by a lin-
ear boundary condition of impedance type. The acoustic impedance is a general
linear relation in the frequency domain between velocity and pressure, i.e. a con-
volution product in the time domain (section 3.2). Since pressure cannot depend on

1For example, the air density fluctuations in an oscillating acoustically compact air bubble in
water cannot be neglected, but we can assume that they are uniform within the bubble.
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the future of the velocity (or vice versa) the discussion of such a linear boundary
condition involves the concept of causality (section 3.2).

We will show how the Green’s function formalism can be used to obtain informa-
tion on aero-acoustic sound generation by turbulence and to estimate the scattering
of sound by a temperature non-uniformity. These problems will be reconsidered
later for free field conditions in chapter 6. It will then be interesting to see how
strong the effect of the confinement is by a comparison of the results obtained in
this chapter and chapter 5 with those obtained in chapter 6.

Convective effects on the wave propagation will be discussed in chapter 9. We
restrict ourselves now to very low mean flow Mach numbers outside the source
regions.

4.2 Basic equations and method of characteristics

4.2.1 The wave equation

We consider a one-dimensional flow in a pipe with uniform cross section. If we
neglect friction the conservation laws of mass and momentum are for a one dimen-
sional flow given by:

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ ∂u

∂x
= ∂(ρβ)

∂t
(4.1a)

ρ
(∂u

∂t
+ u

∂u

∂x

)
+ ∂p

∂x
= fx (4.1b)

where ρβ corresponds to an external mass injection in the flow and fx is an external
force per unit volume.

We assume now that the field consists of a uniform state (ρ0, p0, u0), plus a pertur-
bation (ρ ′, p′, u′) small enough to allow linearization:

ρ = ρ0 + ρ,′ (4.2a)

p = p0 + p′, (4.2b)

u = u0 + u′. (4.2c)
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∂β/∂t and fx , being the cause of the perturbation, must therefore by definition be
small. We substitute (4.2a–4.2c) in (4.1a) and (4.1b). Neglecting second and higher
order terms we obtain the linearized equations:

∂ρ ′

∂t
+ u0

∂ρ ′

∂x
+ ρ0

∂u′

∂x
= ρ0

∂β

∂t
(4.3a)

ρ0
∂u′

∂t
+ ρ0u0

∂u′

∂x
+ ∂p′

∂x
= fx (4.3b)

We can eliminate ρ ′ by using the constitutive equation:

p′ = c2
0ρ
′ (4.4)

which implies that we assume a homentropic flow.

A one-dimensional wave equation is obtained by subtracting the divergence of the
momentum conservation law (4.3b) from the convected time derivative (∂t + u0∂x)

of mass conservation law (4.3a) (to eliminate u′):( ∂
∂t
+ u0

∂

∂x

)2
p′ − c2

0
∂2 p′

∂x2
= c2

0

(
ρ0
∂2β

∂t2
− ∂ fx

∂x

)
. (4.5)

4.2.2 Characteristics

As an alternative we now show the wave equation in characteristic form. This
allows a simple geometrical interpretation of the solution of initial condition
and boundary condition problems with the help of a so-called (x, t) diagram. In
acoustics this procedure is just equivalent with other procedures. However, when
considering high amplitude wave propagation (non-linear acoustics or gas dynam-
ics) the method of characteristic will still allow an analytical solution to many
interesting problems [205, 102, 152]. Also the characteristics play a crucial rôle
in numerical solutions as they determine optimal discretization schemes, and in
particular their conditions of stability.

Using the constitutive equation

∂p

∂t
+ u

∂p

∂x
= c2

(∂ρ
∂t
+ u

∂ρ

∂x

)
we can write the mass conservation law (4.1a) as:

1

ρc

(∂p

∂t
+ u

∂p

∂x

)
+ c
∂u

∂x
= c

ρ

∂(ρβ)

∂t
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by addition, respectively subtraction, of the momentum conservation law (4.1b)
divided by ρ, we find the non-linear wave equation in characteristic form:( ∂

∂t
+ (u ± c)

∂

∂x

)(
u ±

∫
dp

ρc

)
= fx

ρ
± c

ρ

∂(ρβ)

∂t
.

In the absence of source terms this simply states that along the characteristics c±
the Riemann invariant �± is conserved:

�+ = u′ +
∫

dp

ρc
= constant along c+ =

{
(x, t)

∣∣∣ dx

dt
= u + c

}
(4.6a)

�− = u′ −
∫

dp

ρc
= constant along c− =

{
(x, t)

∣∣∣ dx

dt
= u − c

}
(4.6b)

In the presence of source terms we have:

�± − �±0 =
∫

c±

(
ρ0c2

0
∂β

∂t
± c0 fx

)
dt (4.7)

where the integration is along the respective characteristic. For an ideal gas with
constant specific heat we find by using the fact that the flow is isentropic:∫

dp

ρc
= 2c

γ − 1
.

In linear approximation in the absence of sources we have

�± = u′ ± p′

ρ0c0
along the lines defined by c± : dx

dt
= u0 ± c0.

4.2.3 Linear behaviour

In the absence of source terms (the homogeneous problem) we can write the linear
perturbation p′ as the sum of two waves F and G travelling in opposite directions
(along the c+ and c− characteristics):

p′ = F (x − (c0 + u0)t)+ G(x + (c0 − u0)t), (4.8a)

u′ = 1

ρ0c0

(
F (x − (c0 + u0)t)− G(x + (c0 − u0)t)

)
. (4.8b)
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x p(te)

te

x p(t)

(x, t)

c−1

c−2

c+1

c+2

I

II

x	

t

�

Figure 4.1 Solution by means of characteristics.

This solution can be readily verified by substitution into the homogeneous wave
equation. The functions F and G are determined by the initial and boundary con-
ditions. As an example we consider two simple problems for the particular case of
a quiescent fluid u0 = 0.

Let us first consider a semi-infinite pipe closed by a rigid piston moving with a
velocity u p(t) starting at t = 0 and x = 0. If u p/c0 � 1 we can use an acoustic
approximation to solve the problem. Using the method of characteristics we first
observe in a (x, t) diagram (figure 4.1) that there are two regions for x > 0:

region I below the line x = c0t

and

region II above the line x = c0t .

Region I is a region in which perturbations induced by the movement of the piston
cannot be present. The characteristic c+1 : x = c0t corresponds to the path of the
first disturbance generated at t = 0 by the starting piston. Hence the fluid in region
I is undisturbed and we can write by considering a c− characteristic (c−1 ) leaving
this region:

p′ − ρ0c0u′ = 0. (4.9)

This c−1 characteristic will meet the piston path xp(t) =
∫ t

0 u pdt ′ where we have:

u′ = u p (4.10a)
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because we assume the fluid to stick to the piston (u p � c0). Hence from (4.9) and
(4.10a) we have the pressure at the piston for any time:

p′ = ρ0c0u p. (4.10b)

Now starting from a point xp(t) on the piston, we can draw a c+ characteristic (c+2 )
along which we have:

p′ + ρ0c0u′ = (p′ + ρ0c0u′)p = 2ρ0c0u p(te) (4.11)

where te is the retarded or emission time, implicitly given by

te = t − x − x p(te)

c0
. (4.12)

This is the time at which the disturbance travelling along c+2 and reaching an ob-
server at (x, t) has been generated by the piston. At any point (x, t) along c+2 we
can find a c−2 characteristic originating from the undisturbed region for which (4.9)
is valid. Combining (4.9) and (4.11) we see that along c+2 we have:

u′ = u p(te) (4.13a)

p′ = ρ0c0u p(te). (4.13b)

We could have obtained this solution directly simply by using (4.8a,4.8b), the gen-
eral solution of the homogeneous equation. Because the tube is semi-infinite and
the piston is the only source of sound, we have only waves travelling in the positive
x direction so that (with u0 = 0):

p′ = F (x − c0t) (4.14a)

u′ = F (x − c0t)/ρ0c0. (4.14b)

Using the boundary condition u′ = u p at the piston x = x p we find the retarded
(or emission) time equation (4.12) and so the solution (4.13a,4.13b).

We now consider an initial value problem in a semi-infinite pipe. Suppose that the
pipe is closed at x = 0 by a fixed rigid wall (u′(x = 0) = 0) and that in the region
0 < x < L the fluid is undisturbed while for x > L there is originally a uniform
disturbance (p′0, u

′
0) of the uniform quiescent fluid state valid for x > 0 (p′0, u

′
0 =

0) (figure 4.2). We can easily delimit the uniform regions I and II in which the

RienstraHirschberg 19 July 2006 20:00



4.2 Basic equations and method of characteristics 77
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u′ = u′0
x 	

Figure 4.2 (x, t) diagram for the initial value problem.

initial state will prevail by drawing the c+1 and c−1 characteristics emanating from
the point (x, t) = (L , 0).
The state in region IV at the closed pipe end is the next easiest one to determine.
We draw the characteristic c−2 emanating from region II along which we have:

c−2 : p′ − ρ0c0u′ = p′0 − ρ0c0u′0. (4.15)

At the closed pipe end u′ = 0 so that for t > L/c0:

p′IV(x = 0) = p′0 − ρ0c0u′0 (4.16)

In region III we obtain the solution by considering the intersection of the waves c+1
and c−1 emanating from regions I and II respectively:

c+1 : p′ + ρ0c0u′ = 0 (4.17a)

c−1 : p′ − ρ0c0u′ = p′0 − ρ0c0u′0. (4.17b)

Hence:

p′III = 1
2 (p

′
0 − ρ0c0u′0) (4.18a)

u′III = − 1
2 (p

′
0 − ρ0c0u′0)/ρ0c0. (4.18b)

Finally for any point in the region IV above the line x = c0(t − L/c0) we have:

c+3 : p′ + ρ0c0u′ = p′0 − ρ0c0u′0 (4.19a)

c−3 : p′ − ρ0c0u′ = p′0 − ρ0c0u′0 (4.19b)
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so that we have:

u′IV = 0 (4.20a)

p′IV = p′0 − ρ0c0u′0 (4.20b)

as we already found at the closed pipe end (x = 0). Of course we could have solved
this problem without an (x, t) diagram, but this requires quite an intellectual effort.

From the previous two examples simple rules are obtained to use an (x, t) diagram
in combination with the method of characteristics:

a) Indicate on the x and t axis the initial and boundary conditions.

b) Draw the characteristics delimiting the undisturbed regions in which the ini-
tial conditions prevail.

c) Consider reflection of these boundary characteristics at boundary conditions.
(Contact surface delimiting regions of different uniform state p0, ρ0, c0, ...

will be discussed in section 4.4.) This yields a further subdivision of the
(x, t) plane in uniform regions.

d) Determine the state at the boundaries at the moment the first message from
the initial conditions arrives.

e) Determine the state in regions where two characteristics of opposite families
c+ and c− emanating from regions where the solution is known meet.

While for initial value problems the method of characteristics is most efficient, we
will use Fourier analysis when we consider boundary condition problems. For a
steady harmonic perturbation equation (4.8a,4.8b) becomes:

p′ = p+ eiωt−ikx +p− eiωt+ikx (4.21a)

u′ = 1

ρ0c0
(p+ eiωt−ikx −p− eiωt+ikx). (4.21b)

where p± are amplitudes which are functions of ω, and k is the wave number
(k = ω/c0).
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4.2.4 Non-linear simple waves and shock waves

A general solution of the non-linear one dimensional homentropic flow equations
can only be obtained by numerical methods. In the particular case of a wave propa-
gating into a uniform region the solution is considerably simplified by the fact that
the characteristics emanating from the uniform region all carry a uniform message.
We will show that as a consequence of this the other characteristics in this wave
are straight lines in the (x, t)-plane. Such a wave is called a simple wave.

Let us for example consider a wave propagating along c+-characteristics which
meets c−-waves emanating from a uniform region. The message carried by the
c−-characteristics is:

�− = u −
∫

dp

ρc
= �−0 for all c−. (4.22)

If we now consider a c+-characteristic in the simple wave, we have in addition that
�+ is equal to another constant, specific to that particular c+:

�+ = u +
∫

dp

ρc
. (4.23)

Addition and subtraction of (4.22) and (4.23) yields, along the c+, the result

u = 1
2 (�

+ + �−0 ), (4.24a)∫
dp

ρc
= 1

2 (�
+ − �−0 ). (4.24b)

Hence, the velocity u is constant along the c+ considered. As in addition to the
thermodynamic quantity

∫
(dp/ρc) also the entropy s is constant along the c+ (be-

cause the flow is homentropic), we conclude that all thermodynamic variables2 are
constant along the c+. In particular the speed of sound c = √(∂p/∂ρ)s is constant
along a c+ in the simple wave. Therefore, the slope (u+ c) of the c+ characteristic
is constant, and the characteristic is a straight line in an (x, t)-diagram.

As an example of an application we consider the simple wave generated for x > 0
by a given boundary condition p(0, t) at x = 0, assuming a uniform quiescent
fluid (u0 = 0) with a speed of sound c = c0 for t < 0. The sound speed c(0, t) at
x = 0 is calculated by using the equation of state

p

p0
=
( ρ
ρ0

)γ
2For a homogeneous fluid the thermodynamic state is fully determined by two thermodynamic

variables.
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which implies

c

c0
=
( p

p0

) γ−1
2γ
.

The message from the c−-characteristics implies

u = 2c0

γ − 1

( c

c0
− 1

)
= 2c0

γ − 1

(( p

p0

) γ−1
2γ − 1

)
.

We can now easily construct the simple wave by drawing at each time t the c+-
characteristic emanating from x = 0. We see from these equations that a compres-
sion ∂

∂t p(0, t) > 0 implies an increase of both c(0, t) and u(0, t), and of course
the opposite for a decompression or expansion. As a result, characteristics at the
peak of a compression wave have a higher speed (u + c) than those just in front
of it. This results into a gradual steepening of the compression wave. This non-
linear deformation of the wave will in the end result into a breakdown of the theory
because neighbouring c+-characteristics in a compression intersect for travelling
times larger than ts or distances larger than xs given by

ts = −
[(∂(u + c)

∂x

)
t=0

]−1

, (4.25a)

xs = −t2
s

[(∂(u + c)

∂t

)
x=0

]
. (4.25b)

For weak compressions we find the approximation for an ideal gas with constant
γ :

xs � c0ts = 2γ p0c0

γ + 1

[(∂p

∂t

)
x=0

]−1

. (4.26)

For t > ts or x > xs the solution found by integration of the differential equations
becomes multiple valued and loses its physical meaning.

The approximation on which the equations are based will already fail before this
occurs because the wave steepening involves large gradients so that heat conduc-
tion and friction cannot be ignored anymore. This limits the process of wave de-
formation. For large pressure differences across the wave the final gradients are so
large that the wave thickness is only a few times the molecular mean free path,
so that a continuum theory fails. The wave structure is in the continuum approxi-
mation a discontinuity with jump conditions determined by integral conservation
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laws. We call this a shock wave. Apart from discontinuous, the solution is also
dissipative, as there is production of entropy in the shock wave.

If the wave is initiated by a harmonic perturbation p′(0, t) = p̂ cos(ωt), the shock
formation distance corresponding to the largest value of ∂

∂t p′ is given by

xsω

c0
= 2γ p0

(γ + 1) p̂
.

In a pipe segment, closed on both sides by a rigid wall, a wave travels easily hun-
dreds of wave lengths before it is attenuated significantly by friction. Therefore,

ff

mf

p

horn exit pressure ph

1

0.5

0

1

0.5

0

0.5
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0p h
(k
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)

p h
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t (s)
0.001 0.002 0.003 0.0040

Figure 4.3 The pressure signal measured at the exit of the
horn for three playing levels: piano (p), mezzo-
forte (mf), and fortissimo (ff).

even at apparently modest am-
plitudes of p̂/p0 = O(10−2)

shock waves can appear in a
closed tube driven by a piston
at its resonance frequency. Re-
cent papers discussing such ef-
fects are the review of Crighton
([34]) and the work of Ock-
endon e.a. ([148]). When the
pipe segment is open at one
end, the wave is inverted each
time it reflects at the open end.
The non-linear wave distortion
due to the wave propagation
during half an oscillation pe-
riod is compensated, at least
in first approximation, in the
following half period. Under
such conditions non-linear ef-
fects due to flow separation at
the open pipe termination (Dis-
selhorst & Van Wijngaarden
[40]) or even turbulence in the acoustical boundary layer ([121], [214], [3], [45])
can appear before non-linear wave distortion becomes dominant.

However, when the pipe is driven by a strongly non-harmonic pressure signal
p′(0, t), the wave steepening may lead to a shock wave formation before the open
end has been reached. This may, for example, occur in a trombone where the pres-
sure at the exit of the horn shows very sharp peaks, as shown in figure (4.3). The
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increase of the wave distortion with the amplitude explains in such a musical instru-
ment the increase of brightness (the higher harmonics) of the sound with increasing
sound level (Hirschberg [67]). In open-air loudspeaker horns wave propagate in
non-linear way. In mufflers of combustion engines shock waves are also common.

When the non-linear deformation is small, the generation of the first harmonic p̂1

at 2ω0 by a signal p̂, originally harmonic with frequency ω0, is given by [158]:

p̂1

p̂
= x

2xs
(4.27)

4.3 Source terms

While fx is a source term in (4.1b) which can be realized by non-uniform gravita-
tional or electromagnetic forces, the source term ∂2(ρβ)/∂t2 in (4.1a) does not cor-
respond to the creation of mass (because we consider non-relativistic conditions).
Hence if we introduce a source term ∂2(ρβ)/∂t2 this term will be a representation
of a complex process which we include in the 1-D inviscid flow model as a source
term. For example the effect of fluid injection through a porous side wall in the
pipe can be considered by assuming a source term in a uniformly filled pipe with
rigid impermeable walls.

In the case of fx we may also find useful to summarize the effect of a complex
flow such as the flow around a ventilation fan by assuming a localized momen-
tum source in a one dimensional model. This is called an actuator disk model.
Of course, this kind of representation of a complex process by a simple source is
only possible if we can find a model to calculate this source. This is only attractive
if a simplified model or an order of magnitude estimate can be used. When the
source region is compact we will be able to find such simple relationships between
a simplified local flow model and the corresponding 1-D sources by applying inte-
gral conservation laws over the source region and neglecting variations in emission
time over the source region. The general treatment of the aero-acoustic sources has
already been given in section 2.6. We focus here on some additional features which
we will use in our applications of the theory.

In a compact region of length L and fixed volume V enclosed by a surface S, we
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will use the conservation laws for mass and momentum in integral form (App. A):

d

dt

∫∫∫
V

ρ dx +
∫∫
S

ρv ·n dσ = 0 (4.28a)

d

dt

∫∫∫
V

ρv dx +
∫∫
S

(P + ρvv)·n dσ =
∫∫∫

V

f dx (4.28b)

where P is the stress tensor (Pij ).

Within the volume V we describe the flow here in full three dimensional detail,
so (4.28a) has no source term. However, the source term ∂2(ρβ)/∂t2 in the one
dimensional representation of the mass conservation law is supposed to include
the effect of the volume integral (d/dt)

∫∫∫
ρ dx. In order to understand this we

compare the actual source region with a 1-dimensional representation of this source
region (figure 4.4). Integration of (4.1a) over the source region yields for a uniform

�
�

A

L
	


ϕex

n
 n	

SV

1 2

Figure 4.4 One dimensional representation of source region.

pipe cross section:∫ L

0

∂ρ

∂t
dx + (ρu)2 − (ρu)1 =

∫ L

0

∂(ρβ)

∂t
dx . (4.29)

If we assume L to be small compared to the acoustic wave length (compact) and
the source term ∂2(ρβ)/∂t2 to be uniform we can write in linearized form :

∂β

∂t
= �u′δ(x − y) (4.30)
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for a small source region around x = y. The value of �u′ = (u′2 − u′1) to be used
in (4.30) is found by application of (4.28a) to the actual situation. If we assume
the flow to be uniform at the planes 1 and 2 of cross-section A, where it enters and
leaves the volume V , we obtain:

A[(ρu)2 − (ρu)1] = − d

dt

∫∫∫
V

ρ dx + ϕex (4.31)

where ϕex is the externally injected mass flux into V through the side walls. For
identical fluids at both sides and in linearized approximation for a compact source
region we have:

Aρ0�u′ = − d

dt

∫∫∫
V

ρ ′ dx + ϕex. (4.32)

Since typical wavelengths are much larger than the compact source region, density
and pressure gradients are negligible and we can replace the volume integral by the
averaged value. We can write for a homentropic flow

�u′ = − V

Aρ0c2
0

dp′

dt
+ ϕex

Aρ0
.

In a similar way, if we can neglect the volume contribution (d/dt)
∫∫∫

ρv dx to the
integral conservation law, we obtain in linear approximation (neglecting ρ0u′2

2 and
ρ0u′1

2):

fx = �p′δ(x − y). (4.33)

This source term for the 1-dimensional wave equation can be used as a representa-
tion of a complex flow such as that around a ventilation fan.

As an example of a sound source we consider now the effect of the convection of
a small fluid particle with a density ρ and speed of sound c (different from ρ0 and
c0) passing through a sudden change in pipe cross section in which we assume a
steady isentropic and subsonic flow u0(x) (figure 4.5). We will first consider the
problem by using the linearized form of the integral conservation laws for small
differences in density and speed of sound ((ρ− ρ0)/ρ0 � 1 and (c− c0)/c0 � 1).
A more formal discussion of this effect is given by Morfey in [127].

If the volume Vp of the fluid particle is much smaller than the nozzle volume V
and if the properties of the fluid particle do not differ much from that of the rest of
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Figure 4.5 Particle convected with the main flow u0(x) through a nozzle.

the fluid, we can assume that the particle is convected with the undisturbed steady
flow velocity u0(x). As the particle is small the pressure over the particle will be
uniform and in first approximation equal to the main flow pressure p0(x). p0(x) is
given by Bernoulli’s equation:

p0(x)+ 1
2ρ0u2

0(x) = constant. (4.34)

The variation in pressure p0(x) will induce a volume variation of the particle, ad-
ditional to that of the mean flow, which is related to the variation in the fluid com-
pressibility

K = 1

ρ

(∂ρ
∂p

)
S
= 1

ρc2
(4.35)

by:

A�u′ = −(K −K0)Vp
d

dt
p0(x p(t)) (4.36)

which implies a source term:

∂β

∂t
= −K −K0

A
Vp

d

dt
p0(x p(t))δ(x − y) (4.37)

where:

u p = .
x p= u0(x p). (4.38)

because we assume that the particle is convected with the mean flow velocity u0.
Furthermore the particle will exert an additional force on the fluid due to the density
difference (ρ − ρ0) which implies a force source term:

fx = �p′δ(x − y) = −ρ − ρ0

A
Vp

Du p

Dt
δ(x − y)

= −ρ − ρ0

A
Vpu0

du0

dx
δ(x − y). (4.39)
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This force is due to the difference in inertia between the particle and its environ-
ment. Note that for an ideal gas the compressibility K is given by:

K = 1

γ p
. (4.40)

Hence for a small particle in this linear approximation the volume source term
(4.37) is due to a difference in γ . This term vanishes if we consider the convection
of a hot gas particle (not chemically different from the environment) which we
call an entropy spot. In that case sound production will be due to the difference of
inertia between the entropy spot and the surrounding fluid. Howe [71] refers to this
as acoustical “Bremsstrahlung”.

In a similar way we can describe the effect of a slow variation of the tube cross
section area A on sound waves of low frequency (i.e. d

dx A �√A � λ). With some
care we can derive a suitable one-dimensional approximation, called Webster’s
horn equation, to describe the wave propagation (see section 8.5). To leading order
the momentum conservation law is not affected by the cross section variation. The
mass conservation law, however, becomes:

∂ρ ′

∂t
+ ρ0

A

∂Au′

∂x
= 0 (4.41)

This can be interpreted as the linearized continuity equation (4.3a) with a volume
source term

∂β

∂t
= u′

A

∂A

∂x
(4.42)

4.4 Reflection at discontinuities

4.4.1 Jump in characteristic impedance ρc

The procedure described in the previous section to incorporate sources in a com-
pact region into a one dimensional model can also be applied to determine jump
conditions over discontinuities in a pipe. It should be noted that a mathematically
more sound derivation, allowing also higher order corrections, is obtained by using
the method of Matched Asymptotic Expansions. This will be worked out in more
detail in chapter 8.

We first consider an abrupt change at x = y in speed of sound c and density ρ
between two media, 1 and 2, in a pipe with uniform cross section (figure 4.6).
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x

ρ1c1 ρ2c2
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1 2

Figure 4.6 Jump in acoustic impedance.

Considering a thin control volume (between the dotted lines 1 and 2), enclosing
the contact surface between the two media and moving with the fluid, we find from
the laws of mass and momentum conservation, respectively

�u′ = u′2 − u′1 = 0, (4.43a)

�p′ = p′2 − p′1 = 0. (4.43b)

By using the general solution (4.8a,4.8b) of the homogeneous wave equation, we
have at x = y for the jump conditions in the pressure and velocity, respectively:

F1(y − c1t)+ G1(y + c1t) = F2(y − c2t)+ G2(y + c2t), (4.44a)
F1(y − c1t)− G1(y + c1t)

ρ1c1
= F2(y − c2t)− G2(y + c2t)

ρ2c2
. (4.44b)

If, for example, we have a source at x < y generating an incident wave F1, in a
tube of infinite length so that G2 = 0, we obtain

G1(x + c1t) = RF1
(
2y − (x + c1t)

)
, (4.45a)

F2(x − c2t) = T F1
(
(1− c1

c2
)y + c1

c2
(x − c2t)

)
, (4.45b)

where R = ρ2c2 − ρ1c1

ρ2c2 + ρ1c1
, T = 2ρ2c2

ρ2c2 + ρ1c1
.

The factor R between G1 and F1 is called the reflection coefficient and the fac-
tor T between F2 and F1 the transmission coefficient. We observe that if ρ1c1 =
ρ2c2 the acoustic wave is not reflected at the contact discontinuity. Inspection of
(4.44a,4.44b) for ρ1c1 = ρ2c2 also shows that the only solution is F1 = F2 and
G1 = G2. This corresponds to results obtained already in section 3.2 when consid-
ering harmonic waves.
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A1 A2

1
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L

Figure 4.7 Abrupt cross sectional area change.

4.4.2 Monotonic change in pipe cross section

We now consider a compact transition in pipe cross sectional area from A1 to A2.
If the flow is homentropic and there is no flow separation (vorticity is zero) the
pressure difference �p′ = p′2 − p′1 across the discontinuity can be calculated by
using the incompressible unsteady Bernoulli equation (1.31b):

�p′ = 1
2ρ0(u

′
1

2 − u′2
2)− ρ0

∂
∂t�ϕ, (4.46)

where �ϕ = ϕ2 − ϕ1 is the potential difference. In linear approximation:

�p′ � −ρ0
∂
∂t�ϕ. (4.47)

For a compact smooth change in cross section as in figure (4.7) we have continuity
of flux A1u′1 = A(x)u′(x), while the potential difference can be estimated as�ϕ =∫ 2

1 u′ dx � u′1
∫ 2

1 (A1/A(x))dx ∼ u′1L . The pressure difference �p′ is of the order
of ρ0ωu′1L , which is negligible when Lω/c0 � 1. We then have a pressure uniform
over the entire region. Note that while this is a very crude approximation, this is a
stronger result than just a continuity condition (see section 4.4.4). This condition
�p′ = 0 can be combined with the linearized mass conservation law in the low
frequency approximation

ρ0 A1u′1 = ρ0 A2u′2 (4.48)

to calculate the reflection at a pipe discontinuity.

4.4.3 Orifice and high amplitude behaviour

Instead of a monotonic variation of the pipe area A we consider an orifice placed
in the pipe with an opening area Ad and a thickness L (figure 4.8). We start with
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Figure 4.8 Orifice.

the problem of acoustic wave propagation through a stagnant fluid (u0 = 0). In
principle, if we use the approximations (4.47) and (4.48) and if we neglect the
potential jump �ϕ, we see that the orifice will be completely “transparent” to the
acoustic waves. However, if Ad � A we find experimentally a significant effect
of such an orifice which is due to the inertia of the air in the opening. Assuming a
uniform velocity and an incompressible flow without friction we have from (4.47):

�p′ � −ρ0
A

Ad
L
∂u′

∂t
. (4.49)

where u′ is the acoustic velocity in the pipe. We could also simply have obtained
this result by considering the pressure difference �p′ necessary to accelerate the
mass of fluid (ρ0 Ad L) in the orifice and noticing that the particle velocity in the
orifice is given by:

u′d =
A

Ad
u′. (4.50)

In practice (4.49) yields a lower bound for the pressure drop across the orifice
because we neglected the inertia of the air in the region outside the orifice. This
effect can be taken into account by introducing an “end correction” δ on both sides:

Leff = L + 2δ (4.51)

where δ appears to be of the order of (Ad/π)
1/2. Typically (8/3π)(Ad/π)

1/2 for
a circular orifice and a larger value for a slit [81]. This explains why a thin orifice
(L → 0) also affects the propagation of acoustic waves in a pipe. For a circular
orifice of radius a in a thin plate we have Leff = πa/2 (see [158]).

If we consider a narrow orifice the local velocity u′d in the orifice may become quite
large. When the acoustic particle displacement u′d/ω becomes comparable to the
radius of curvature of the edges at the entrance and the exit of the orifice non-linear
effects and friction will result into acoustically induced vortex shedding [84, 85,
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40, 36]. When the fluid particle displacement becomes comparable to the diameter
of the orifice (Ad/π)

1/2u′d/ω = O(1) the vortex shedding can be described in
terms of the formation of a free jet, by assuming that there is no pressure difference
across the boundaries of the jet. The shear layers enclosing the jet are not capable
of sustaining a pressure difference. Furthermore, if Ad/A� 1 we assume that the
kinetic energy in the flow 1

2ρu′d
2 is lost upon deceleration of the jet by turbulent

mixing with the air in the pipe. This implies that in addition to the linear terms in
Bernoulli we should add the non-linear effects:

�p′ = −ρ0
A

Ad
L
∂u′

∂t
− 1

2ρ
( A

Ad
u′
)2
. (4.52)

A typical feature of this effect is that the pressure�p′ has now a component 1
2ρu′d 2

which is in phase with the acoustic velocity, and therefore will involve (acoustic)
energy losses that were absent in the situations discussed until now. These losses
are due to the fact that the kinetic energy in the jet is dissipated by turbulence.

The model proposed here appears quite reasonable but in many cases the surface
area of the jet is smaller than Ad which implies additional losses[36]. This effect
can be as much as a factor 2. The jet contraction by a factor 2 corresponds to the
so called vena contracta at an unflanged pipe entrance. For a thin orifice with sharp
edges the jet cross section is a factor π

π+2 narrower than the orifice. When the edges
are rounded off the contraction effect disappears rapidly.

It is interesting to consider now how a mean flow affects the acoustic properties
of an orifice. We assume that the mean flow velocity u0 in the pipe is so small
compared to the speed of sound c0 that we can neglect all convective effects on
the wave propagation (u0/c0 � 1). As the orifice has a small aperture (Ad/A), the
mean flow velocity in the orifice is significant. We assume a stationary frictionless
and incompressible flow. The assumption of a frictionless flow fails, however, to
describe the flow at the exit of the orifice where as a result of friction the flow
separates from the wall and a free jet of surface area Ad is formed.

Assuming further no pressure difference between the jet and its environment we
can write for the total pressure difference � p0:

�p0 = − 1
2ρ
( A

Ad
u0

)2
. (4.53)

For acoustic velocity fluctuations u′ we have, neglecting the higher order terms in
u′:

�p′ = −ρ0
A

Ad
L
∂u′

∂t
− ρ0

( A

Ad

)2
u0u′. (4.54)
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We see from this equation that even in the linear approximation energy is trans-
ferred (ρ0(A/Ad )

2u0u′2) from the acoustic field to the flow (where it is dissipated
by turbulence). This effect is of course a result of the force ρ0(ω×v) in Howe’s
analogy (section 2.6). The vorticity responsible for this is located in the shear layer
that confines the free jet. We will describe the formation of a free jet in section 5.1.
The consequence of this effect is that an orifice placed in a tube with a mean flow is
a very efficient damping mechanism. This device is indeed used downstream of a
compressor in order to avoid the low frequency pulsations that may be induced by
the compressor into the pipe system. As explained by Bechert [7], for any orifice
placed at the end of a pipe one can find a Mach number at which the reflection
coefficient for long acoustic waves vanishes. Such an orifice acts thus an anechoic
termination for low frequencies!

A beautiful property of this damping mechanism is that it is not frequency depen-
dent as long as the frequency is low enough. This is not the case with the effect of
friction and heat transfer which are strongly frequency dependent (equation 3.13),
in a way that at low frequencies friction is quite inefficient.

It is interesting, however, to note that under special flow conditions an orifice can
produce sound as a result of vortex shedding. This occurs in particular if the orifice
has sharp edges at the entrance where the vortices are shed [5] (figure 4.9a) or
when the edges are rounded at the downstream side [223, 66] (figure 4.9b).

The frequency of the sound produced by the vortex shedding is such that the period
of oscillation roughly corresponds to the travel time of a vortex through the orifice
(a Strouhal number Sr = f L/(Au0/Ad ) = O(1)). When this sound source cou-
ples with a resonator (see next chapter) large amplitudes may be generated. This
is an explanation for human whistling [223, 197]. Flow instabilities of this type
also occur around pipe arrays such as used in heat exchangers [15]. Whistling cor-
responds to self-sustained flow instabilities. In the case of an externally imposed
acoustic wave, the periodic vortex shedding is a non-linear phenomenon which
will generate higher harmonics. Hence, suppressing low frequency-pulsations (be-
ing mechanically dangerous) with an orifice may be paid by the generation of high
frequency noise which is an environmental problem.

A generalization of the procedure which we introduced intuitively for the ori-
fice can be obtained for an arbitrary compact discontinuity in a pipe system. The
acoustical effect of this discontinuity can be represented in an acoustical model
by a pressure discontinuity (�p)source which is calculated by subtracting from the
actual pressure difference �p the pressure difference (�p)pot, corresponding to a
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Figure 4.9 Vortex shedding at an orifice.

potential flow with the same velocity boundary conditions:

(�p)source = �p − (�p)pot.

The actual pressure difference �p can be measured or calculated as a function of
the main flow velocity u0 and the acoustical velocity fluctuation u′. The poten-
tial flow difference (�p)pot is calculated. This procedure is in particular powerful
when we can use a quasi-stationary flow model. We then use the incompressible
continuity equation and Bernoulli: Su = constant and p + 1

2ρ0u2 = constant, to
calculate (�p)pot, while �p is measured in the form �p = CD

1
2ρu2 as a function

of various parameters. When convective effects are taken into account in the wave
propagation, it appears to be important to define the aeroacoustic source in terms
of a discontinuity (�B)source in the total enthalpy rather than in the pressure.
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4.4.4 Multiple junction

In the previous sections we used the equation of Bernoulli to derive pressure jump
conditions for a discontinuous change in pipe diameter. We could also have ob-
tained a similar expression by considering the law of energy conservation. The
use of Bernoulli is a stronger procedure. To illustrate this statement we consider
the reflection of waves at a multiple junction. As an example consider a T shaped
junction between three pipes of cross-sectional surface A1, A2 and A3, respectively
(figure 4.10).

�

�
A1 �

�A3

	

A2

1 3

2

 x1

	x3

�

x2

Figure 4.10 Multiple junction.

We define along each pipe a x-coordinate with a positive direction outwards from
the junction. The conservation of mass for a compact junction yields:

A1u′1 + A2u′2 + A3u′3 = 0 (4.55)

while from the equation of Bernoulli we find:

p′1 = p′2 = p′3 (4.56)

Note that closed side branches are very popular as reflectors to prevent the propa-
gation of compressor induced pulsations. It is interesting to note that flow may also
drastically affect the acoustic properties of a multiple junction and make the use
of this device quite dangerous. In particular if we consider junctions with closed
side branches, the shear layer separating the main flow from the stagnant fluid in
the pipe is unstable. Coupling of this instability with a resonant acoustic field may
result into pulsation levels of the order of p′ � O(ρc0u0) ([18, 98, 226]). Again,
the amplitude of these pulsations depends crucially on the shape of the edges of
the junction, in the same way as the shape of the edges was crucial in the orifice
problem. More about this will be explained in the next chapter.
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For a T-shaped junction of a main pipe with a closed side branch or a grazing flow
along an orifice in the wall the quasi-steady theory for a main flow u0 indicates
that the shear layer can be represented by an acoustical pressure discontinuity:
(�p)source = −Kρ0u0u′, where K is unity for a uniform main flow. For an orifice
small compared to the boundary layer thickness of the main flow K is of the order
of 0.7 because of the velocity defect in the boundary layer relative to the main flow
velocity u0. This effect is discussed by Ronneberger [186], Tijdeman [207] and
Cummings [37].

4.4.5 Reflection at a small air bubble in a pipe

Air bubbles in the water circuit of the central heating of a house are responsible
for a very characteristic, high-frequency sound. As a first step to the understanding
of this effect we now consider the reflection of a harmonic wave on a small air
bubble of radius a (Volume Vp = (4π/3)a3) placed in a pipe filled with water at
a static pressure p0. If the bubble is small compared to the characteristic acoustic
wave length we can assume that the pressure p′b in the bubble will be uniform. We
neglect surface tension effects and assume that the bubble pressure p′b is equal to
the surrounding water pressure.

In the low frequency limit, when the inertial forces in the flow around the bubble
can be neglected, the pressure induced by a passing acoustic plane wave in the
water around the bubble will be practically uniform: �p′ = 0. The bubble will
react quasi-statically to the imposed acoustic pressure variation p′. Since the air-
filled bubble is much more compressible than water, the presence of the bubble
results into a volume source term, giving rise to a jump in acoustic velocity across
a control volume including the bubble:

�u′ � − Vp

Aγ p0

dp′

dt
(4.57)

where we neglected the water compressibility compared to the air compressibility
(Kair = 1/γ p0) and we assume an adiabatic compression (taking γ = 1 would
imply an isothermal compression as we expect for very low frequencies). The re-
flection coefficient for a wave F1 incident to the bubble can now be calculated
from the jump conditions for �p′ and �u′. Assuming G2 = 0 we find from the
continuity of pressure:

F1 + G1 − F2 = 0 (4.58)
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and from (4.57):

F1 − G1 − F2 = ρwcwVp

Aγ p0

d

dt
(F1 + G1). (4.59)

By subtraction of (4.58) from (4.59) we can eliminate F2 and find:

G1 = −ρwcwVp

2Aγ p0

d

dt
(F1 + G1) (4.60)

The inertia of the water around the bubble will dramatically influence the interac-
tion between the bubble and acoustic waves at higher frequencies. If we assume
that the acoustic wave lengths in both air and water are very large compared to the
bubble radius we still can assume a uniform pressure in the bubble. This implies
also that the bubble will remain spherical. The oscillations of the bubble radius:

a = a0 + â eiωt (4.61)

around the equilibrium value a0 will induce a radial flow of the water around the
bubble if we assume that the bubble is small compared to the pipe diameter. In the
low frequency approximation considered here, this flow is incompressible. Hence
we have for the radial velocity vr :

vr =
(a

r

)2(∂a

∂t

)
� iω

(a0

r

)2
â eiωt (4.62)

where we have assumed â/a0 � 1. The pressure variation in the bubble:

pb = p0 + p̂b eiωt (4.63)

can be related to the incompressible far field (still near the bubble compared to the
pipe radius) by applying the linearized Bernoulli equation:

p + ρw ∂ϕ
∂t
= pb + ρ0

∂ϕb

∂t
. (4.64)

Using (4.62) we can calculate (ϕ − ϕb):

ϕ − ϕb =
∫ ∞

a
vr dr � iωa0â eiωt (4.65)

so that:

p − pb = ρwω2a0â eiωt . (4.66)
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Assuming the air in the bubble to be an ideal gas with pb ∼ ργb and neglecting the
dissolution of air in water so that a3ρb = constant, we find:

1

ρb

∂ρb

∂t
= 1

γ pb

∂pb

∂t
= −3

a

∂a

∂t
(4.67)

or in linear approximation:

p̂b

p0
= −3γ

â

a0
. (4.68)

Combining (4.66) with (4.68) and assuming that p = p0 + p̂′ eiωt we have:

p̂′ = ρwa0â(ω2 − ω2
0) (4.69)

where the resonance frequency ω0 (Minnaert frequency) is defined by:

ω2
0 =

3γ p0

a2
0ρw

. (4.70)

The reflection coefficient R = G1/F1 can now be calculated in a similar way as
from (4.58) and (4.59) with the modified source term �u′ = 4π iωa2

0 â A−1 eiωt .
Since �p′ = 0, we have:

F1 + G1 − F2 = 0 (4.71a)

and

F1 − G1 − F2 = ρwcw
4π iωa0(F1 + G1)

Aρw(ω2 − ω2
0)

(4.71b)

or

R = G1

F1
= −

(
1+ A(ω2 − ω2

0)

2π iωcwa0

)−1
. (4.72)

We see that at resonance ω = ω0 the wave is fully reflected by the bubble, and the
reflection coefficient is R = −1. We have of course obtained such a dramatic result
because we have neglected all the dissipation mechanisms which can limit the
amplitude of the bubble oscillation. The compressibility of the water flow around
the bubble yields already such a mechanism which limits the amplitude of the
oscillation at the resonance frequency ω0. This is, however, only one of the many
amplitude-limiting mechanisms.

For small bubbles, when the diffusion length for heat transfer into the bubble is
comparable to the bubble radius, heat transfer is a significant energy loss [162].
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This occurs for: a = O((Kair/ωρairCP)
1/2). For larger bubbles heat transfer is neg-

ligible. For smaller bubbles the compression occurs isothermally and one should
put γ = 1 in the theory. However, the change of γ from 1.4 to 1 does not intro-
duce damping. It is only in the intermediate range that the heat flux results in a
significant rate of volume change in phase with the acoustic pressure. (As it is the
work W = ∫

p′dV = ∫ T
0 p′(dV/dt)dt which determines the losses, a volume V

proportional to p′ implies for a periodic oscillation W ∼ ∫ T
0 p′(dp′/dt)dt = 0.)

Another limitation of the amplitude of the oscillation is the highly non-linear be-
haviour of the pressure for oscillation amplitudes â comparable to a0. If a → 0 the
pressure in the bubble increases dramatically (pb ∼ a−3γ ). Linear theory fails and
the bubble may start showing chaotic behaviour (referred to as acoustical chaos)
[103].

As an isolated air bubble already has a strong effect on the acoustics of a water
filled tube, a large amount of bubbles will have a dramatic effect. In section 2.3
we already considered the low frequency limit for the speed of sound in a bubbly
liquid. We have seen that a small volume fraction of bubbles can considerably
reduce the speed of sound. This is due to the large compressibility of the air in
the bubbles. As ω reaches ω0 this effect will become dramatic resulting in a full
reflection of the waves (speed of sound zero) [34, 90]. In the frequency range ω0 <

ω < ω0cw/cair no wave propagation is possible in an ideal bubbly liquid. Above
the anti-resonance frequency ω0cw/cair the bubble movement is in opposition to
the applied pressure fluctuations. The radius increases when the pressure increases.
This is just opposite to the low frequency behaviour (figure 4.11). As a result the
bubbly mixture will be stiffer than water, and c > cw! Sound speeds of up to 2500
m/s were indeed observed in bubbly water with β = 2× 10−4 !

Another fascinating effect of bubble resonance is its role in the very specific, uni-
versal, sound that rain is known to generate when it hits a water surface [163].
First it should be noted that bubble oscillation is such an efficient source of sound
that any rain impact sound is dominated by it. Now, in spite of the wide range of
velocities and sizes of rain drops that occurs, the universality of the sound of rain
is due to the fact that only bubbles are formed of just one3 particular size. This
is a result of the following coincidence. On the one hand, not any combination of
drop size and drop velocity occurs: rain drops fall at terminal velocity (balance of
air drag and drop weight) which is an increasing function of the droplet radius.
On the other hand, not any combination of drop size and drop velocity generates
bubbles upon impact on water. At each drop size there is one drop velocity where

3i.e. a narrow range
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Figure 4.11 Idealized frequency dependence of the speed of sound in a bubbly liquid.
The low-frequency limit clow, slightly lower than cw , is given in equation (2.42) or
(2.43).

bubbles are formed. This bubble formation velocity is a decreasing function of the
droplet radius. Combining these increasing and decreasing functions, we see that
they intersect just at one combination of radius and velocity, with just one bubble
size.

4.5 Attenuation of an acoustic wave by thermal and
viscous dissipation

4.5.1 Reflection of a plane wave at a rigid wall

Consider a pipe −∞ < x ≤ 0, closed at x = 0 by a rigid wall. Inside the pipe a
plane wave p+(x, t) = F (t − x/c0) travels in positive direction and reflects into a
left-running wave p−(x, t). Without visco-thermal losses, the boundary condition
of vanishing velocity becomes

u(0, t) = p+(0, t)− p−(0, t)
ρ0c0

= 0.
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4.5 Attenuation of an acoustic wave by thermal and viscous dissipation 99

This implies a reflected wave p−(x, t) = F (t + x/c0), equal in amplitude and
shape to the incident wave, and therefore a reflection coefficient of unity

R = p−(0, t)
p+(0, t)

= 1.

In reality unsteady heat transfer at the wall will act as a sink of sound, slightly
reducing the reflection coefficient. This heat transfer is a result from the difference
between the wall temperature Tw, which remains practically constant, and the bulk
temperature T of the gas, which varies with the adiabatic pressure fluctuations p′ =
p++ p−. We will limit our analysis to small temperature differences (T −Tw) and
small departures from the quiescent reference state. This allows a linearized theory,
so that we can consider the reflection of a harmonic wave, denoted in complex form
as

p(x, t) = p̂(x) e−iωt

with amplitude p̂ outside the neighbourhood of the wall being given by p̂(x) =
p̂+ e−ikx + p̂− eikx . (Likewise, in the following the hatted quantities with “ ˆ” will
denote their corresponding, x-dependent, complex amplitudes.)

We define (see also section 8.8) the thermal boundary layer thickness δT as the
width of the region near the wall in which the rate of increase of internal energy is
just balancing the net rate of heat conduction (in this region the wave equation is
not valid):(

ρ0Cp
∂

∂t
T ∼ ωρ0CpT ′

)
�

(
K0
∂2

∂x2
T ∼ K0

T ′

δ2
T

)
.

Hence, the characteristic length scale for the thermal boundary layer is

δT =
√

2K0

ωρ0Cp
. (4.73)

We will now calculate the temperature profile within the thermal boundary layer.
This will allow us to calculate the deviation ρ̂e = ρ̂ − p̂/c2

0 between the density
fluctuations in the boundary layer and the density fluctuations p̂/c2

0 corresponding
to adiabatic compression of an ideal acoustic flow as found outside the boundary
layer. This excess density ρ̂e has to be supplied by a fluid flow towards the wall
at the edge of the boundary layer. This velocity û∞ can be interpreted by an ob-
server, outside the boundary layer, as due to a displacement d̂T of the rigid wall in
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a hypothetical fluid without heat conduction. The work performed by this “virtual”
wall displacement on the acoustic field corresponds to the sound dissipation by the
thermal conduction in the boundary layer.

This approximation is based on the key assumption that the acoustic wave length
is much larger than the thickness δT of the thermal boundary layer: ωδT /c0 � 1.
In such a case we can assume at the edge of the boundary layer a uniform adiabatic
flow, (dû/dx)∞ = 0, of a uniform fluid ( p̂∞, ρ̂∞). The non-uniformity associated
with the acoustic wave propagation is negligible on the length scale we consider.
The boundary layer flow is described by the one-dimensional conservation laws
(1.1,1.2,1.5,1.6) in linearized form:

iωρ̂ = −ρ0
dû

dx
, (4.74a)

iωρ0û = −d p̂

dx
+ 4

3
η0

d2û

dx2
, (4.74b)

iωCVρ0T̂ = −p0
dû

dx
+ K0

d2T̂

dx2
. (4.74c)

Since in a liquid acoustic wave propagation is isothermal we can limit our analysis
to a gas. We assume an ideal gas with:

p̂

p0
= ρ̂

ρ0
+ T̂

T0
.

The boundary conditions are given by:

T̂ (0) = T̂w, û(0) = 0,
T̂∞
T0
= γ − 1

γ

p̂∞
p0
,

p̂(x)→ p̂∞ = p̂+ + p̂− (x/δT →−∞),

where we have introduced, for generality, the fluctuation of the wall temperature
T̂w. After the study of the reflection of a wave at an isothermal wall (T̂w = 0) we
can use the same theory to calculate the sound generated by fluctuations of the wall
temperature (T̂w �= 0).

After eliminating û from the energy equation by using the mass conservation law,
and eliminating ρ̂ by means of an ideal gas law, we obtain

iω
( T̂

T0
− γ − 1

γ

p̂

p0

)
= a0

d2

dx2

( T̂

T0

)
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4.5 Attenuation of an acoustic wave by thermal and viscous dissipation 101

where a0 = K0/ρ0Cp is the heat diffusivity coefficient. In terms of the excess
density, with

ρ̂e

ρ0
= 1

ρ0

(
ρ̂ − p̂

c2
0

)
= ρ̂

ρ0
− p̂

γ p0
= γ − 1

γ

p̂

p0
− T̂

T0
,

this equation becomes

iω
ρ̂e

ρ0
= a0

d2

dx2

( ρ̂e

ρ0

)
− a0

γ − 1

γ

d2

dx2

( p̂

p0

)
.

Combining the momentum and mass conservation laws we have

ω2ρ̂ = −d2 p̂

dx2
+ 4

3
η0

d3û

dx3
.

Assuming that viscosity is not dominant – which we can check from the solution
to be obtained – we see that

d2

dx2

( p̂

p0

)
� −ω

2ρ̂

p0
= −ω

2γ

c2
0

ρ̂

ρ0
.

The relative pressure variation across the boundary layer (4.73) is of the order of

p̂ − p̂∞
p0

∼ ω
2δ2

T

c2
0

( ρ̂
ρ0

)
while ρ̂e/ρ0 is of the same order of magnitude as ρ̂/ρ0, because γ − 1 = O(1).
This implies that if we neglect terms of the order of ω2δ2

T /c
2
0, we have

iω
ρ̂e

ρ0
= a0

d2

dx2

( ρ̂e

ρ0

)
.

This equation has the solution

ρ̂e

ρ0
=
[
ρ̂e

ρ0

]
w

exp
(
(1+ i)x/δT

)
(4.75)

where

[
ρ̂e

ρ0

]
w

= γ − 1

γ

p̂∞
p0
− T̂w

T0
.

Using the equation of mass conservation, the velocity û(−δT ) at the edge of the
boundary layer is given by the integral of the density across the boundary layer as
follows. (Note that we have chosen the positive x-direction towards the wall.)

û(0)− û(−δT ) = −iω
∫ 0

−δT

ρ̂

ρ0
dx .

RienstraHirschberg 19 July 2006 20:00



102 4 One dimensional acoustics

The difference between this velocity and the velocity −iω(ρ̂∞/ρ0)δT that would
occur in the absence of heat conduction, can be interpreted as a fictitious wall
velocity ûT given by

ûT = iωd̂T = iω
∫ 0

−δT

ρ̂ − ρ̂∞
ρ0

dx = iω
∫ 0

−∞
ρ̂e

ρ0
dx,

where d̂T is the fictitious wall displacement amplitude. Substitution of solution
(4.75) yields

d̂T = 1
2(1− i)δT

[ ρ̂e

ρ0

]
w
, (4.76a)

= 1
2(1− i)δT

γ − 1

γ

p̂∞
p0

if Tw = 0 (an isothermal wall). (4.76b)

For an isothermal wall (T̂w = 0) these wall effects, leading to the effective velocity
ûT , have the same effect to the incident acoustic wave as an impedance of the
wall. This equivalent impedance ZT , defined as the ratio of the acoustic pressure
fluctuations p̂∞ at the wall and the flow velocity ûT directed towards the wall (c.f.
Eq. 3.14), is then given by

ZT = p̂∞
ûT
= p̂∞

iωd̂T

= ρ0c0
(1− i)c0

(γ − 1)ωδT

The corresponding time averaged acoustic intensity is found to be

〈IT 〉 = 〈p′u′〉 = 1
2 Re(1/ZT )| p̂∞|2

= 1
4(γ − 1)

ωδT

ρ0c2
0

| p̂∞|2

which indicates an energy flux from the acoustic field towards the wall and there-
fore an absorption of energy.

4.5.2 Viscous laminar boundary layer

The viscous attenuation of a plane acoustic wave propagating along a pipe can
often be described in a similar way as the thermal attenuation by means of a dis-
placement thickness d̂V of the wall. We consider first the simple case of a laminar
boundary layer in the case of wave propagation in a stagnant and uniform fluid.
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The wave propagates in the x-direction and induces an acoustic velocity parallel to
the wall which has an amplitude û∞ in the bulk of the flow. The no-slip condition
at the wall, ûw = 0, induces a viscous boundary layer of thickness

δV =
√

2ν0/ω = δT

√
Pr . (4.77)

where Pr = ν0ρ0Cp/K0 is Prandtl’s number. This viscous boundary layer is usu-
ally referred to as the Stokes layer. Neglecting terms of the order of (ωδV/c0)

2 we
can write the x-momentum conservation law in the boundary layer as

iωρ0û = η0
d2û

dy2
,

where y is the direction normal to and towards the wall (so y ≤ 0). The y-
momentum conservation law reduces to the pressure being uniform across the vis-
cous boundary layer. The boundary conditions are

û(0) = ûw = 0, û(y)→ û∞ if y/δV →−∞.
The solution is then

û = û∞
[

1− exp
((1+ i)y

δV

)]
. (4.78)

The displacement thickness dV is defined as the fictitious wall position for which
the acoustical mass flux of a uniform flow with the velocity û∞ is equal to the
actual mass flow. This implies:

d̂V =
∫ ∞

0

(
1− û

û∞

)
dy = − 1

2 (1− i)δV . (4.79)

4.5.3 Damping in ducts with isothermal walls.

In section 4.5.1 we have considered the attenuation of an acoustic wave that reflects
normally to a wall. This attenuation was due to the heat conduction in the thermal
boundary layer. In the previous section 4.5.2 we have described the laminar viscous
boundary layer associated to a plane wave propagating along a duct (parallel to
the wall). In a gas such a propagation will also induce a thermal boundary layer,
determined by the pressure fluctuations p′∞ in the bulk of the flow. The expression
for the displacement thickness d̂T derived in section 4.5.1 can be applied.

Using the concept of displacement thickness we will calculate the attenuation of
a plane wave travelling in x-direction along a pipe of cross-sectional area A and
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cross-sectional perimeter L p. We assume that the boundary layers are thin com-
pared to the pipe diameter.

The bulk of the flow is described by the following plane wave, satisfying Euler’s
equation in linear approximation:

p′∞ = p̂∞ eiωt−ikx,

iωρ0u′∞ = ikp′∞,

where k is a complex wave number (the imaginary part will describe the atten-
uation). Incorporating the displacement thickness to the mass conservation law
integrated over the pipe cross section yields (Lighthill [111])

∂

∂t

[
ρ∞(A + L pdT )

]
= ∂

∂x

[
ρ∞u∞(A + L pdV )

]
In linear approximation for a harmonic wave this becomes

iω
( p̂∞

c2
0

A + ρ0L pd̂T

)
= ikρ0û∞(A + L pd̂V )

where we made use of the isentropic relationship p̂∞ = c2
0ρ̂∞. After substitution

of the expressions for the displacement thickness d̂T (4.76b) and d̂V (4.79)

d̂T = 1
2(1− i)δT

γ − 1

γ

p̂∞
p0
, and d̂V = − 1

2(1− i)δV ,

and elimination of û∞ by means of the Euler’s equation, we find a homogeneous
linear equation for p̂∞, which yields the dispersion relation

k2

k2
0

= A + 1
2 (1− i)(γ − 1)L pδT

A − 1
2(1− i)L pδV

,

where k0 = ω/c0. Expanding this expression for small δT and δV (using the fact
that δV /δT =

√
Pr = O(1)) and retaining the first order term, we obtain the result

of Kirchhoff

k − k0 = 1
4 (1− i)

L p

A
δV k0

(
1+ (γ − 1)

δT

δV

)
, (4.80)

which corresponds to equation (2.13). More accurate expressions at low fre-
quencies, when the acoustical boundary layers are not thin, are discussed by Ti-
jdeman [206] and Kergomard [94]. At high frequencies the viscosity becomes
significant also in the bulk of the flow (Pierce [158]).
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At high amplitudes (û∞δV /ν ≥ 400) the acoustical boundary layer becomes turbu-
lent (Merkli [121], Eckmann [45], Akhavan [3], Verzicco [214]). In such a case the
damping becomes essentially non-linear. Akhavan [3] presents results indicating
that a quasi-stationary turbulent flow model provides a fair first guess of the wall
shear stress.

For an isothermal (liquid) flow the quasi-steady approximation yields

k2 − k2
0 = − 1

4 ik0
L p

A
c f û∞

where the friction coefficient c f is defined (and determined) by

c f = − 4A

L p
1
2ρ0U 2

0

dp0

dx

which relates the mean pressure pressure gradient (dp0/dx) to the stagnation pres-
sure 1

2ρ0U 2
0 of a mean flow through the pipe. Note that since (k−k0) depends on the

amplitude û∞ of the acoustical velocity this model implies a non-linear damping.
The transition from laminar to turbulent damping can therefore be a mechanism
for saturation of self-sustained oscillations (see chapter 5).

For smooth pipes, Prandtl proposed a correlation formula for c f as a function of
the Reynolds number of the flow. The influence of wall roughness is described
in the Moody diagram. Such data are discussed by Schlichting [195]. In the case
of a turbulent gas flow the thermal dissipation is rather complex. This makes a
low frequency limit difficult to establish. In the presence of a mean flow vari-
ous approximations describing the interaction between the acoustic waves and the
turbulent main flow have been discussed by Ronneberger [187] and Peters [156].
The formula of Kirchhoff derived above appears to be valid at low Mach numbers
(U0/c0 � 1) as long as the Stokes viscous boundary layer thickness δV remains
less than the laminar sublayer δL � 15ν/

√
τwρ0 of the turbulent main flow (where

the wall shear stress τw = c f
1
8ρ0U 2

0 ).

When δL � δV , we can use a quasi-stationary approximation. The transition from
the high frequency limit to the quasi-stationary limit is discussed in detail by Ron-
neberger [187] and Peters [155].These references also provide information about
the Mach number dependence of the wave number.
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4.6 One dimensional Green’s function

4.6.1 Infinite uniform tube

We consider a one dimensional approximation for the propagation of waves in a
pipe. This approximation will be valid only if the frequencies generated by the
sources of sound in the pipe are lower than the cut-off frequency. As the acoustic
field observed at position x far from a source placed at y is induced by a plane
wave, the observer position in the cross section of the pipe is indifferent. Applying
the reciprocity principle (section 3.1) we see that in the low frequency approxi-
mation the signal observed at x should also be indifferent for the position of the
source in the cross section of the tube at y. Hence as the source position within
a cross section is indifferent we can consider the source to be smeared out over
this cross section resulting in a 1-dimensional source. We therefore look for the
corresponding one-dimensional Green’s function g(x, t|y, τ ) defined by:

∂2g

∂t2
− c2

0
∂2g

∂x2
= δ(t − τ)δ(x − y). (4.81)

Comparison of this wave equation with the wave equation (4.5) in the presence of
source term ρ0∂β/∂t and forces fx :

∂2 p′

∂t2
− c2

0
∂2 p′

∂x2
= c2

0

(
ρ0
∂2β

∂t2
− ∂ fx

∂x

)
(4.5)

indicates that we can assume that (4.81) is a particular case of (4.5) for fx = 0 and:

∂β

∂t
= 1

ρ0 c2
0

H (t − τ)δ(x − y). (4.82)

For an infinitely long tube the solution is:

g(x, t|y, τ ) =


1

2c0
H
(

t − τ + x − y

c0

)
for x < y,

1

2c0
H
(

t − τ − x − y

c0

)
for x > y.

(4.83)

This result is obtained intuitively by using (4.30) which implies that g is the pres-
sure wave generated by a piston moving with a velocity u′ = (2ρ0c2

0)
−1 H (t − τ)

for x = y + ε and a second piston with a velocity u′ = −(2ρ0c2
0)
−1 H (t − τ) for

x = y − ε. Equations (4.83) are then obtained by using the method of characteris-
tics (section 4.2).
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Of course, the above result (4.83) is more efficiently written as:

g(x, t|y, τ ) = 1

2c0
H
(

t − τ − |x − y|
c0

)
. (4.84)

The combination t − |x − y|/c0 is the time at which the signal observed at (x, t)
has been emitted by the source at y. This time is called the retarded or emission
time te:

te = t − |x − y|
c0

. (4.85)

4.6.2 Finite uniform tube

We can also fairly easily construct a Green’s function for a semi-infinite pipe (x <
L) terminated at x = L by an ideal open end at which by definition g(L , t|y, τ ) =
0. By constructing the wave reflecting at this ideal open end with the method of
characteristics we find:

g(x, t|y, τ ) = 1

2c0

{
H
(

t − τ + x − y

c0

)
+ H

(
t − τ − x − y

c0

)
−H

(
t − τ + x + y − 2L

c0

)}
(4.86)

which we can also write for x < L as:

g(x, t|y, τ ) = 1

2c0

{
H
(

t − τ − |x − y|
c0

)
−H

(
t − τ − |x + y − 2L|

c0

)}
. (4.87)

This solution could also have been obtained by assuming the pipe to be part of
an infinitely long pipe, in which at the point x = 2L − y a second point source
is placed with opposite sign of and synchronous with the original point source
at x = y. This second source, called image source, is constructed such that it
generates the field due to reflection by the boundary at x = L in the original
problem, and therefore brings into effect the boundary condition at x = L . This
method of images can be generalized to the case of a finite pipe segment (0 < x <
L). In such a case we will have to consider the contribution of an infinite number
of images corresponding to the reflections of the original waves at the boundaries.
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For example, the field in a finite pipe with hard walled ends is equivalent with the
field in an infinite pipe with equal sources in x = −y, ±2L ± y, ±4L ± y, . . . .
This comes down to a right-hand-side of equation 4.81 of

∞∑
n=−∞

δ(t − τ)
(
δ(x − y − 2nL)+ δ(x + y − 2nL)

)
and a solution

g(x, t|y, τ ) = 1

2c0

∞∑
n=−∞

{
H
(

t − τ − |x − y − 2nL|
c0

)
+ H

(
t − τ − |x + y − 2nL|

c0

)}
. (4.88)

The Green’s function is clearly more complex now. Furthermore, the addition of
mass by the source in the finite volume results into a (roughly) linear growth of g
in t . (Verify this for x = y = 1

2 L and τ = 0.) This is of particular interest in the
time-harmonic case. When the end conditions are such that multiple reflections are
physically relevant they imply that constructive and destructive interferences will
select waves corresponding to standing wave patterns or resonances of the tube.
This problem will be discussed further in the next chapter.

4.7 Aero-acoustical applications

4.7.1 Sound produced by turbulence

We consider a turbulent jet in an infinitely extended pipe (figure 4.12). We suppose

S

�

�

d��

Figure 4.12 Turbulent jet in a pipe.
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that the jet diameter d and the jet velocity u0 are such that the characteristic fre-
quency u0/d of the sound produced in the pipe is low enough to use a one dimen-
sional approximation. We will use the integral formulation of Lighthill to obtain
an order of magnitude estimate for the sound pressure level produced by this flow,
assuming that the mean flow in the pipe is negligible. We also assume that the jet
temperature and density is the same as that of the environment (homogeneous fluid
and homentropic flow). If Reynolds number Re = u0d/ν 
 1 and Mach number
M = u0/c0 � 1 we can use Lighthill’s analogy in the form4:

∂2ρ ′

∂t2
− c2

0
∂2ρ ′

∂x2
i

= ∂
2(ρ0viv j )

∂xi∂x j
. (4.89)

As we use a tailored Green’s function (we neglect the effect of the flow injection
device) the density ρ ′ can be estimated by:

ρ ′(x, t) =
∫ t

t0

∫∫∫
V

∂2(ρ0viv j )

∂yi∂y j
G(x, t|y, τ ) d ydτ. (4.90)

Using the approximate Green’s function derived in the previous section (Eq. 4.84)
we have:

ρ ′(x, t) =
∫ t

t0

∫∫∫
V

∂2(ρ0viv j )

∂yi∂y j
g(x, t|y, τ )S−1d ydτ. (4.91)

After two partial integrations, assuming the source to be limited in space, we ob-
tain:

ρ ′(x, t) =
∫ t

t0

∫∫∫
V

∂2

∂y2
g(x, t|y, τ )S−1ρ0u2 d ydτ. (4.92)

We moved the differentiation from the unknown source term towards the known,
and explicitly available, Green’s function (4.84). We now note that:

∂g

∂y
= − 1

2c2
0

δ
(

t − τ − |x − y|
c0

)∂|x − y|
∂y

, (4.93)

4While the assumption that friction is a negligible source of sound was already formulated by
Lighthill, a reasonable confirmation of its validity was only provided thirty years later by the work
of Morfey [128] and Obermeier [147]. The exact range of validity is still subject of research.
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so that from:

∂|x − y|
∂y

= − sign(x − y) = −∂|x − y|
∂x

(4.94)

we have the following important symmetry in the Green’s function of an infinite
pipe:

∂g

∂y
= −∂g

∂x
. (4.95)

We substitute this result in (4.92). Since the integration is to the source position g,
we can now remove one of the differentiations to x from the integral, resulting in
the expression:

ρ ′(x, t) = ∂

∂x

∫ t

t0

∫∫∫
V

ρ0u2

2Sc2
0

δ(te − τ) sign(x − y) d ydτ. (4.96)

with te = t − |x − y|/c0. The time integration can now be carried out:

ρ ′(x, t) = ∂

∂x

∫∫∫
V

1

2Sc2
0

[ρ0u2]τ=te sign(x − y) d y (4.97)

where we used the property (C.27) of the δ-function. At sufficiently large distances
the only length scale in the solution is the characteristic wave length c0d/u0 corre-
sponding to the characteristic frequency5 u0/d of the turbulence in the jet. Hence
we can estimate:

∂

∂x
� 1

c0

∂

∂t
∼ u0

c0d
= M0

d
. (4.98)

Because the sound production by turbulence decreases very fast with decreasing
mean flow velocity, the volume of the free jet contributing to the sound produc-
tion is limited to a region of the order of d3. In this region the turbulent velocity
fluctuations are of the order of u0. Hence we find at large distances:

ρ ′ ∼ M0

d

ρ0u2
0

2Sc2
0

d3 (4.99)

implying:

ρ ′2 ∼
(1

2
ρ0M3

0 d2/S
)2
. (4.100)

5We assume a jet with circular cross section.
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This is the result obtained by Ffowcs Williams [53]. This Mach number depen-
dence has indeed been observed in a pipe downstream of an orifice for sufficiently
high Mach numbers. At low Mach numbers the sound production is dominated by
the dipole contribution of O(M4) due to the interaction of the flow with the orifice
[122].

A discussion of the sound production by confined circular jets is provided by
Reethof [168] for arbitrary jet Mach numbers. Reethof finds for subsonic jets
(M0 < 1) a ratio of the radiated power to the flow power ηac = 3 × 10−4 M3

0 .
For supersonic jets (M0 > 1) typical values are ηac = 1.6 × 10−3(M2

0 − 1)1/2. In
that case the Mach number is taken from M2

0 = 2
γ−1 [(p1/p2)

(γ−1)/γ − 1], where
p1/p2 is the ratio of the pressure across the orifice.

The dependence of the sound production on the jet geometry is discussed by Verge
[213] and Hirschberg [68]. For planar jets issued from a slit of height h the typical
frequencies are of the order of 0.03u0/h (Bjørnø [12], Sato [194]). This implies
that correlations developed for subsonic circular jets are useless for planar jets.

4.7.2 An isolated bubble in a turbulent pipe flow

Consider an isolated bubble of radius a0 small compared to the pipe diameter D.
Assume a turbulent pipe flow. The sound produced by the turbulence will, locally,
be enhanced by the presence of the bubble. If we assume that the frequencies in
the turbulence, typically O(u0/D), are much smaller than the bubble resonance
frequency ω0, we can calculate the sound produced by the interaction of the bubble
with the turbulence.

The Green’s function is calculated by using the reciprocity principle. We consider
the acoustic response of the bubble for a plane wave emitted from the observer
position x towards the bubble. For the sake of simplicity we consider this incident
wave to be harmonic pin = p̂in eiωt−ikx . The bubble pressure response p̂b is, as is
shown in 5.4.5 (use (4.72) with p̂in = F1 and p̂′ = F2), given by:

p̂b = −

(ω0

ω

)2

1−
(ω0

ω

)2 − 2π ia0cw
Sω

p̂in. (4.101)

Using Bernoulli and the continuity equation we can calculate the pressure distrib-
ution around the bubble:

p̂ − p̂b = −ρwiω(ϕ − ϕb) (4.102)
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where:

ϕ − ϕb =
∫ r

a0

iωâa2
0

r2
dr = iωâa0

(
1− a0

r

)
. (4.103)

Furthermore, we have:

â

a0
= − p̂b

3γ p0
, (4.104)

so that p̂(r) is given by:

p̂ = p̂b

(
1−

( ω
ω0

)2(
1− a0

r

))
=

1−
(ω0

ω

)2 − a0

r

1−
(ω0

ω

)2 − 2π ia0cw
Sω

p̂in. (4.105)

Taking for p̂in the Fourier transform of (2c0 S)−1 H (t − τ − |x − y|/c0) we obtain
as p̂ the Fourier transform Ĝ(x|y) of the Green’s function G(x, t|y, τ ):

Ĝ(x|y) = e−iωτ−ik|x−y|

2iωcwS
·

1−
(ω0

ω

)2 − a0

r

1−
(ω0

ω

)2 − 2π ia0cw
Sω

. (4.106)

Using Lighthill’s analogy we now can compare the response of the pipe to turbu-
lence, with and without bubble. We obtain by partial integration:

ρ ′ =
∫ t

t0

∫∫∫
V

ρ0viv j
∂2G

∂yi∂y j
d ydτ. (4.107)

If we consider a small turbulent spot in the direct neighbourhood of the bubble the
ratio of the responses is given by:

∂2Gb

∂r2

∂2G0

∂y2

=
∂2Gb

∂r2

∂2G0

∂x2

=
c2
wa0

ω2r3

1−
(ω0

ω

)2 − 2π ia0cw
Sω

. (4.108)

At the resonance frequency ω0 this yields a factor (a0S/4πr3)(ρwc2
w/3γ p0)

1
2 while

for low frequencies we find (a0/r)3(ρwc2
w/3γ p0). If r = O(a0) we see that the
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sound produced by turbulence in the neighbourhood of the bubble will be dramat-
ically enhanced.

The major contribution of the bubble turbulence interaction will be at low fre-
quencies. An important reason for this is that for typical conditions in water flow,
the length scale of vortices corresponding to pressure fluctuations at the bubble
resonance frequency ω0/2π is much smaller than the bubble radius [35]. In such
a case these pressure fluctuations are averaged out at the bubble surface and do
not have any significant contribution to the spherical oscillations of the bubble. An
example of sound production by bubbles in a pipe flow is the typical sound of a
central heating system when air is present in the pipes. Also the romantic sound of
water streams and fountains is dominated by bubbles. In those cases, however, we
have a three-dimensional environment.

4.7.3 Reflection of a wave at a temperature inhomogeneity

As a last example of the use of the integral equation based on the Green’s function
formalism we consider the interaction of a wave with a limited region in which
the gas temperature T (x) is non-uniform (0 < x < L). We assume the pipe to be
horizontal and that gravity is negligible. Hence, at rest the pressure is uniform. The
gas density is given by:

ρ/ρ0 = T/T0 (4.109)

and the speed of sound c is given by:

c/c0 = (T/T0)
1
2 (4.110)

where ρ0, T0 and c0 are the properties of the uniform region. We now further as-
sume that |T − T0|/T0 � 1 so that we can use a linear approximation in which we
assume that the scattered sound wave p′′ is weak compared to the amplitude p′i of
the incident wave. In such a case we can write p′ = p′in+ p′′, so that the linearized
1-D wave equation (2.48):

∂2 p′

∂t2
− ∂

∂x

(
c2 ∂p′

∂x

)
= 0

can be approximated by:

∂2 p′′

∂t2
− c2

0
∂2 p′′

∂x2
= ∂

∂x

(
(c2 − c2

0)
∂p′in
∂x

)
. (4.111)
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The source term has been linearized by assuming that the pressure fluctuations are
equal to the (undisturbed) incident wave amplitude. It is the source term considered
by Powell [161] for the description of sound scattering at entropy spots.

Using the integral formulation (3.13) and the one dimensional Green’s function g
we find:

p′′ =
∫ ∞
−∞

∫ L

0

∂

∂y
(c2 − c2

0)
∂p′in
∂y

g dydτ. (4.112)

Partial integration yields

p′′ = −
∫ ∞
−∞

∫ L

0
(c2 − c2

0)
∂p′in
∂y

∂g

∂y
dydτ. (4.113)

From equation (4.84) we have

∂g

∂y
= 1

2c2
0

sign(x − y)δ(te − τ) (4.114)

(with te = t − |x − y|/c0) and hence

p′′ = − 1

2c2
0

∫ L

0
sign(x − y)(c2 − c2

0)

∫ ∞
−∞
δ(te − τ)∂p′in

∂y
dτdy

= − 1

2c2
0

∫ L

0
sign(x − y)(c2 − c2

0)
∂

∂y
p′in(y, te) dy. (4.115)

If we take for example

p′in = p̂in H (x − c0t) (4.116)

and use the relation c2/c2
0 = T/T0, then we have for (say) x < 0

p′′ = 1
4 p̂in

∫ L

0

T − T0

T0
δ
(

y − x + c0t

2

)
dy (4.117)

=


1
4 p̂in

T ( 1
2(x + c0t))− 1

T0
if 0 < x + c0t < 2L

0 otherwise.
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Exercises

a) Show that for an acoustic wave travelling in the negative x direction we have: u′ =
−p′/ρ0c0.

b) Consider a rigid piston at (x = 0) separating the fluid I for x < 0 from the fluid II
at x > 0 in an infinitely long pipe of 10−2 m2 cross section. Assume that the piston
oscillates with a frequency ω and an amplitude a. Calculate the force necessary to
move the piston as a function of time (ρ0,I = 1.2 kg/m3, c0,I = 344 m/s, ρ0,II =
1.8 kg/m3 and c0,II = 279 m/s, ω = 103 rad/s, a = 10−3 m). Use linear theory and
verify if it is indeed valid.

c) Water hammer effect:
Consider a steady flow of water in a rigid horizontal pipe which we stop suddenly by
closing a valve. Calculate the pressure on both sides of the valve for flow velocities
of 0.01 m/s and 1 m/s. What is the force on the valve for a pipe cross section surface
of 10−2 m2.
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Figure 4.13 Exercise d)

d) The same problem as c) but with a slowly closing valve in an infinitely long pipe
(figure 4.13). Assume the area of the valve opening to be a given function of time:

A = A(t).

Suppose further that the flow separates at the exit of the valve forming a free jet into
the pipe downstream of the valve. If A � S we can neglect the recovery of dynamic
pressure ( 1

2ρv
2
j ) upon declaration of the fluid by turbulent mixing of the jet with the

fluid in the pipe. Hence the pressure drop �p across the valve is �p = 1
2ρv

2
j if we

neglect inertial effects in the valve (we assume
√

A(∂v j/∂ t)� v2
j ).

e) Sow that, in the absence of aero-acoustic sources, the conservation of acoustic en-
ergy implies a continuity of pressure (�p′ = 0) across a compact discontinuity in a
pipe, like a sudden change in diameter.

f) Calculate the reflection coefficient R and the transmission coefficient T for a contact
surface between water and air. Consider both the cases of a wave incident from the
air and water sides in the direction normal to the surface.
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g) Same question as f) for a discontinuity in temperature of 30 K in air at atmospheric
pressure (corresponding to the temperature difference from inside our mouth to out-
side in the winter).

h) Calculate the reflected and transmitted acoustic intensities I for questions f) and g).

i) Consider a semi-infinite tube closed at x = 0 by a harmonically moving piston
(u p = û p eiωt ). The tube is filled with air. At a distance L from the piston there is
a temperature jump of 30 K . Calculate the amplitude of the waves in steady state
conditions.

j) Calculate the reflection coefficient R and the transmission coefficient T for a low
frequency wave F1 incident from the left to a stepwise area change from A1 to A2
in an infinitely long pipe. Assume linear behaviour and no mean flow.

k) Same exercise as j) for a combined stepwise change in cross section and specific
acoustic impedance jump �ρc of the fluid.

l) A closed pipe end can be considered as a change of area such, that A2/A1 → 0,
while an open end can be approximated by a change with A2/A1 →∞. Calculate
in both cases the reflection coefficient R, using the result of exercise j).

m) Calculate the reflection coefficient for a harmonic wave at an orifice, assuming lin-
ear behaviour and no mean flow.

n) What are the conditions for which we can neglect friction in the orifice?

o) Consider an orifice of d = 1 mm diameter, without sharp edges, in a pipe, of diameter
D = 1 cm, filled with air at room conditions. At which amplitude (in dB) one would
expect non-linear losses due to acoustical flow separation for a harmonic wave (with
a frequency of 10 Hz, 100 Hz and 1000 Hz) if there is no mean flow. Such orifices
are used in hearing-aid devices for protection.

p) When flow separation occurs as a result of mean flow, the end correction δ is af-
fected. At low frequencies by about a factor 3 compared to high frequencies or the
linear behaviour without flow separation. Explain qualitatively this effect. (Why can
we expect a decrease of δ?)

q) Consider a wave G1(t + x1/c0) incident on a junction of three semi-infinite tubes
(with cross sections A1,A2, and A3). Assuming no other incident wave (G2 = G3 =
0) calculate the reflection and transmission coefficients.

r) Consider a pipe of cross sectional area A1 (A1 = A3) with a closed side branch of
section A2 and of length L (figure 4.14). Calculate the reflection and transmission
coefficients R = F1/G1 and T = F3/G1 for an incident harmonic wave

G1 = eiωt+ikx1

if we assume that G3 = 0. The wave number k is defined as k = ω/c0. What are the
conditions for which R = 0 ? What are the conditions for which R = 1 ? What are
the conditions for which R = −1?
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�

�

L

A1 A3

A2


 x1
	x3

�

x2

Figure 4.14 Tube with closed side branch.

s) Calculate the low frequency limit of the reflection coefficient R = F1/G1 for an air
bubble of 1 mm in a pipe of 1 cm diameter for a harmonic wave of frequency ω.
Assume p0 = 1 bar.
(Answer: R = −(1+ iω2

0 A/2πωcwa0)
−1 with ω2

0 = 3γ p0/ρwa2
0.)

t) Calculate the pressure pb in an air bubble of mean radius a0 in water for an incident
wave pin = p̂in eiωt−ikx in a pipe of cross section A p 
 a2

0.

u) In the model described above (section 4.4.5) the pressure in the bubble is assumed
to be uniform. Is this a reasonable approximation for an air bubble of 1 mm radius
in water up to the resonance frequency ω0 for p0 = 1 bar?

v) In the above model the acoustic pressure imposed on the bubble by the incident
acoustic field is assumed to be uniform across the pipe diameter. Is this a reasonable
approximation for a bubble with a radius a0 = 1 mm placed in a pipe of diameter
D= 1 cm filled with water at ambient pressure? Assume a frequency ω = ω0.

w) In the above model we assumed the bubble to be small compared to the pipe diam-
eter, and far from the walls. Estimate ω0 for a bubble placed at the wall.

x) Is the model valid for a bubble which is large compared to the pipe diameter? Why?

y) Determine the physical dimensions of the Green’s function by substitution in the
wave equation (4.81).

z) Verify (4.84) by Fourier transformation of (4.81) and then using section C.1.

A) Construct the Fourier transformed Green’s function for a semi-infinite (x < L) tube
terminated at x = L by an impedance Z L .

B) Construct the Fourier transformed Green’s function for a source placed left from a
small bubble placed in an infinite tube.

C) Show that for low frequencies G(x, t| y, τ ) = g(x, t|y, τ )/S for |x − y| 
 √S in
a tube of uniform cross section S.
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D) Explain (4.95) in terms of the effect of displacement of the source or observer on
the Green’s function for an infinite tube.

E) Calculate using (4.99) the sound pressure level in a tube of 10cm diameter due to the
inflow of a air jet of 1 cm diameter with a velocity of 10 m/s. Assume atmospheric
conditions and room temperature. Are the assumptions valid in this case? Are the
assumptions valid if u0 = 102 m/s ?

F) Same question as E) for a jet placed at the end of a semi-infinite pipe closed by a
rigid wall, as indicated in figure 4.15.

Figure 4.15 Exercise F)

G) Calculate the amplification factor for turbulence noise at resonance

(S/a2
0)(ρwc2

w/3γ p0)
1
2 , and at low frequencies ρwc2

w/3γ p0 for an air bubble of
diameter 2a0 = 1 mm in a pipe of D = 1 cm diameter filled with water at at-
mospheric pressure.

H) In principle the turbulent pressure fluctuations in a pipe have a broad spectrum with
a maximum around a characteristic frequency u0/D. Consider a flow velocity of
1 m/s. Do you expect the characteristic frequency of turbulence to be large or small
compared to the resonance frequency ω0/2π of an air bubble with 2a0 = 1 mm as
in question G)?

I) For a small bubble the surface tension σ contributes significantly to the internal
pressure pb of the bubble. For a spherical bubble we have:

pb = pwater(a)+ 2σ

a
.

In equilibrium pwater(a) = p0. If we consider the oscillation of such a bubble we
find a resonance frequency:

ω0 =
(3γ p0

ρwa2
0

+ 4σ

ρwa3
0

) 1
2
.

Derive this formula. Given the surface tension σ of water is 7×10−2 N/m, calculate
the bubble radius for which the surface tension becomes important.
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J) The sound in bubbly liquid is often due to the oscillations of bubbles caused by
a rapid local acceleration or to oscillations induced by the coalescence or collapse
of bubbles. This yields the typical “bubbling” noise of a fountain or brook. As an
example consider the difference in volume�V between the sum of the volumes of
two bubbles of equal radii a0 = 10−4 m and a single bubble containing the same
gas (after coalescence). This difference in volume is due to surface tension effects
(see previous question). Assume that the new bubble is released with a radius a
corresponding to the original volume of the two smaller bubbles. The bubble will
oscillate around its new equilibrium radius. The movement will be damped out by
radiation. Calculate the amplitude of the acoustic pressure waves generated in a pipe
of 1 cm diameter filled with water as a function of time.
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5 Resonators and self-sustained oscillations

5.1 Self-sustained oscillations, shear layers and jets

When using Lighthill’s analogy to estimate the intensity of the sound produced by
a turbulent flow in section 4.7.1 we have assumed that the sound source is indepen-
dent of the acoustic field. This assumption was not justified but it seems reasonable
if the acoustic velocities in the flow are “small enough”. In fact this hypothesis
breaks down in a large number of very interesting cases. In many of these cases
the acoustic feedback (influence of the sound field on the sound source) results in
the occurrence of a sharply defined harmonic oscillation, due to the instability of
the flow. Whistling, jet-screech and reheat-buzz are examples of such oscillations.
In general the maintenance of such oscillations implies the existence of a feedback
loop as shown in figure 5.1.

edge hydrodynamic
instability

acoustic
resonator

hydrodynamic feedback

acoustic feedback

Figure 5.1 Flow-acoustic oscillator.

In most cases the acoustic field interacts with an intrinsically unstable hydrody-
namic flow (jet, shear layer) at a sharp edge where the flow separates from the
wall. This separation point appears to be a localized region where the acoustic
flow and the hydrodynamic flow are strongly coupled. We will now consider this
interaction in some detail.

In principle, if the flow were frictionless and is described accurately by a potential
flow, the velocity at an edge would be infinitely large. This can be understood by
considering the flow in a pipe at a bend (figure 5.2).
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1234567
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−∂p

∂r

ρv2

r

v

Figure 5.2 Flow in a bend.

The fluid particles passing the bend feel a centrifu-
gal force ρu2

ϑ/r per unit volume. If the flow is sta-
tionary it is obvious that there should be a cen-
tripetal force compensating the centrifugal force.
In a frictionless flow the only force available is the
pressure gradient −∂p/∂r . Hence, we see that the
pressure at the outer wall in the bend should be
larger than at the inner wall. Using the equation
of Bernoulli for a stationary incompressible flow
(p + 1

2ρv
2 = constant) we conclude that the ve-

locity is larger at the inner wall than at the outer
wall! (See figure 5.3.)

r
v

Figure 5.3 Frictionless flow
in a bend.

We could also have found this result kinematically by
noticing that if a particle in an irrotational flow fol-
lows a curved path there should be a gradient ∂v/∂r
which “compensates” the rotation which the particle
undergoes by following a curved path.

The fact that the pressure is larger at the outer wall can
also be understood as a consequence of the inertia of
the flow which is trying to follow a straight path and
“hits” the wall. The pressure built up at the wall yields
the force necessary to bend the streamlines.

A particle in the flow close to the inner wall is just
like a ball rolling into a well (figure 5.4). The Bernoulli equation, which represents
in this case the law of conservation of mechanical energy, tells that the pressure
decrease implies a decrease of potential energy p which is compensated by an
increase of kinetic energy 1

2ρv
2. When leaving the well (bend) the kinetic energy

is again converted into pressure as the particle climbs again (the adverse pressure
gradient).

v v

v

Figure 5.4 Ball passing along a well.

A frictionless flow is only possi-
ble far from the wall. Even at high
Reynolds numbers there is always a
thin region at the wall where friction
forces are of the same order of mag-
nitude as the inertial forces. We call
this thin region of thickness δ a vis-
cous boundary layer.
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Figure 5.5 Boundary layer
velocity profile.

It can be shown that because the flow is quasi-
parallel the pressure in the boundary layer is
uniform and equal to the local pressure of the
frictionless flow just outside the boundary layer.
More accurately: this implies that the normal
pressure gradient n·∇ p at the wall is negligi-
ble in the boundary layer. In the boundary layer
the friction decelerates the flow to satisfy the
“no-slip boundary condition” at the wall: v = 0
(for a fixed wall; figure 5.5). As is clear from
figure 5.5 the flow in the boundary layer is not

irrotational. The boundary layer is a region of concentrated vorticity.

If we consider now a sharp bend the velocities following potential flow theory
should now become infinitely large at the inner edge (figure 5.6). (This can be
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Figure 5.6 Sharp bend. a) potential flow; b) actual flow.

verified by integration of the radial momentum conservation law.) The assumptions
used to derive the flow pattern break down: the viscous term η∇2v which we have
neglected in the equation of motion becomes dominant near the edge. This results
into a flow separation. The flow separation can be understood qualitatively when
we think of the ball in figure 5.4 in the case of a very deep well and in presence of
friction. In such a case the ball never succeeds in climbing up the strong pressure
gradient just behind the edge.

The separation of the boundary layer at the edge implies an injection of vorticity
in the main stream. This vorticity is concentrated in the shear layer separating the
mean flow from a dead water region (figure 5.6) just behind the bend. Taking the
circulation along a path enclosing part of such a shear layer clearly shows that the
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circulation per unit length (d�/d
) in the shear layer is just equal to the velocity
jump across the layer: d�/d
 = �v (figure 5.7).
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Figure 5.7 Circulation in the shear layer

This complex process of separation can be described within the frame of a friction-
less theory by stating that the velocity at a sharp edge should remain finite. This
so-called “Kutta condition” implies that a thin shear layer should be shed at the
edge. The shear layer contains a distribution of vorticity such that the velocity in-
duced at the edge by the vorticity just compensates the singularity of the potential
flow (which would exist in absence of shear layer).

It can be shown that this condition also implies that the shear layer is shed tangen-
tially to the wall at the side of the edge where the flow velocity is the largest. The
validity of a Kutta condition for an unsteady flow has been the subject of quite a
long controversy. At this moment for a sharp edge this is an accepted principle.
Hence if next to a stationary flow we impose an unsteady potential flow (acoustic
perturbation) the amount of vorticity shed at the edge will be modulated because
we modify the singular potential flow at the edge.

We see therefore that within a potential flow theory the sharp edges play a crucial
rôle because they are locations at which a potential flow can generate vorticity.1 It
is not surprising therefore that in nature the feedback from the acoustic field on a
flow will often be concentrated at an edge.

Self-sustained oscillations imply an amplification of the acoustic perturbations of
the main flow by flow instability (this is the energy supply in the feedback loop).

1In a two dimensional frictionless incompressible flow Dω/Dt = 0 so that there is no interaction
between the vortical and potential flow which can change ω within the flow.
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The instability of a thin shear layer can be understood by considering as a model
an infinitely long row of line vortices in a 2-D flow (figure 5.8).
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Figure 5.8 Instability of a vortex row induced by a non-uniformity of d�/d
.

The velocity induced by a line vortex of strength � is calculated using Biot-Savart’s
law:

uϑ = �

2πr
, (5.1)

where r is the distance between the point at which we consider the velocity and
the vortex. As we see in figure 5.8a a row of vortices is (meta)stable because the
velocity induced on a given vortex by the vortices left of the point are just compen-
sated by the velocities induced by the vortices at the right (by symmetry). This is,
however, a metastable situation as any perturbation will induce a growing flow in-
stability. For example a lateral displacement of one of the vortices out of the row is
sufficient. Hence we understand (figure 5.8b) that a modulation of the vorticity by
acoustic perturbations can induce a roll up of the shear layer into a vortex structure
as shown in figure 5.9.

The most unstable type of flows is the flow between two shear layers of oppo-
site vorticity: jets and wakes (figure 5.10). A wake appears to be so unstable that
when friction forces are sufficiently small (above a certain Reynolds number) it
is absolutely unstable [78]. Hence, any perturbation will result in a break up of
the wake structure shown in figure 5.10. A typical result of this is the occurrence
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Figure 5.9 Shear layer instability.

of vortices, periodically shed from a cylinder for Re > 50, which is known as the
Von Kármán vortex street [15]. This periodic vortex shedding is responsible for the
typical whistle of an empty luggage grid on a car. A jet left alone (free jet) will also
exhibit some specific oscillations at moderate Reynolds numbers (Re = O(103))
[13]. Turbulence will, however, kill any clear structure at higher Reynolds num-
bers. A jet needs a little help to start whistling. However, there are many ways to
persuade him to whistle!

Extensive reviews of these jet oscillations are given by Blake and Powell [14],
Rockwell [183, 185], and Verge [210]. We consider here only two examples:

– the edge tone;

– the jet screech.

In the first case the jet oscillations are controlled by placing a sharp edge in the
jet. The interaction of the jet with the edge induces a complex time dependent
flow. At low Mach numbers the flow can be described locally as an incompressible
flow (compact) and a description of the jet oscillation can be obtained without
considering sound propagation or radiation [32]. As the phase condition in the
feedback loop is determined by the travel time of perturbations along the jet, the

RienstraHirschberg 19 July 2006 20:00



126 5 Resonators and self-sustained oscillations

oscillation frequency will be roughly proportional to the main flow velocity V0 in
the jet. Self-sustained oscillations occur for those frequencies for which the phase
of the signal changes by a multiple of 2π as the signal travels around the feedback
loop. We assume an instantaneous feedback from the jet-edge interaction towards
the separation point from which the shear layers bounding the jet emerge. The
phase shift is therefore determined by the jet.

jet

wake

Figure 5.10 Jet and wake.

As a rough first order estimate the per-
turbations travel in the shear layer with
a compromise between the velocities at
both sides of the shear layer (about 1

2 V0).
A more accurate estimate can be ob-
tained by considering the propagation of
infinitesimal perturbations on an infinite
jet as proposed by Rayleigh [13, 167].
In spite of the apparent simplicity of the
geometry an exact analytical theory of
edge tone instabilities is not available
yet.

Like in the case of many other famil-
iar phenomena there does not exist any
simple “exact” theory for jet oscillations.
Actually, the crudest models such as pro-
posed by Holger [69] are not less realistic
than apparently more accurate models.

The most reasonable linear theory un-
til now is the one proposed by Crighton
[32]. A major problem of such a linear
theory is that it only predicts the condi-
tions under which the system is stable or unstable. It is not able to predict the
amplitude of self-sustained oscillations. At the end of this chapter we will discuss
the model of Nelson [144] for a shear-layer which is very similar to the model of
Holger [69] for an oscillating free jet. Both models do predict an amplitude for
sound production by the oscillating flow.

Placing such an edge tone configuration near an acoustic resonator will dramat-
ically influence its behaviour. A resonator is a limited region of space in which
acoustic energy can accumulate, just like mechanical energy can accumulate in the
oscillations of a mass-spring system. The sound radiated by the edge-jet interaction
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results now in a second feedback path through the oscillations of the resonator. In
such a case the resonator often imposes its resonance frequency to the system. The
phase change that a signal undergoes as it travels around the feedback loop is now
not only determined by the jet but also by the delay in the acoustic response of the
participating resonator. The oscillation condition is still that the total phase change
should be a multiple of 2π . When the frequency is close to the resonance frequency
of the resonator, a small variation in frequency results into a large phase shift and
this easily compensates the change in travel time along the jet. An example of such
a system is the flute or the recorder.

In many textbooks the flute oscillation is described as an acoustically driven edge-
tone system. It is rather tragi-comic that one describes a system which we would
like to understand in terms of the behaviour of a system which we hardly under-
stand. As stated by Coltman [24] this is “a rather circular procedure in view of the
fact that there are many gaps in the theoretical basis for both”. Simplified models of
the recorder are proposed by Fabre [49] and Verge [212, 210, 211, 213]. It indeed
appears that a recorder is not simply an “edge tone” coupled to a resonator.

We do not always need an edge for jet oscillations. In the jet screech we have a
supersonic jet which has a cell structure due to the formation of shocks and expan-
sions when the jet pressure at the exit is not equal to that of the environment (figure
5.11). The interaction of acoustic perturbations with the edges at the pipe exit re-
sults into the formation of periodically shed vortices. The vortex interaction with a
shock wave appears to generate strong acoustic pulses. In particular the interaction
with the third cell appears to result into a localized periodic source of sound. The
acoustic wave travels back towards the pipe exit via the quiescent environment of
the jet. This feedback loop can be blocked by placing a wall of absorbing material
around the jet [159, 185]. This reduces the jet oscillations, demonstrating that the
feedback loop described is the one which controls the jet oscillations. A review of
some related supersonic flow oscillations is given by Jungowski [91].

Many of the features observed in a jet oscillation can also be observed in a shear
layer separating a uniform main flow from a dead water region in a cavity [184]
(closed side branch in a pipe system or open roof of a car). We will discuss these
types of oscillations after we have discussed the acoustics of some elementary type
of acoustic resonators.
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Figure 5.11 Under-expanded supersonic jet with typical cell structure. We ob-
serve acoustic waves generated by the interaction of a vortex with the shock. The vortex
is shed periodically at the nozzle lip. Acoustical feedback has been reinforced in this
experiment of Poldervaart and Wijnands (TUE) by placing reflectors around the jet
nozzle.
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5.2 Some resonators

5.2.1 Introduction

Before considering other types of acoustically controlled flow instabilities we will
focus our attention on the acoustic resonator. This is an essential step because in
many applications the identification of the resonator is sufficient to find a cure
to self-sustained oscillations. Furthermore resonators are also used to impede the
propagation of sound or to enhance absorption. An example of this behaviour is
the reflection of acoustic waves by an air bubble in a pipe filled with water (section
4.4.5). We start our discussion with explaining the occurrence of resonance in a
duct segment. We then will discuss the behaviour of the Helmholtz resonator.

5.2.2 Resonance in duct segment

We will first discuss the behaviour of a pipe segment excited by an oscillating
piston. The most efficient way to do this is to consider this behaviour in linear
approximation for a harmonically oscillating piston. We will see at the end of this
section that at critical frequencies the theory does not provide a solution if we
neglect friction. In the time domain we can understand this so-called resonance
behaviour more easily. For this reason we will start our discussion by considering
the problem in the time domain.

Consider a pipe segment 0 < x < L closed at x = L by a rigid wall (û·n = 0)
and at x = 0 by an oscillating piston with a velocity u p(t):

u p = û p E(t) at x = 0 (5.2)

where, in order to simplify the notation, we introduced in this subsection the aux-
iliary function

E(t) = H (t) eiωt . (5.3)

We assume that û p/c0 � 1 so that an acoustic approximation is valid. We con-
sider only plane waves (ωA1/2/c0 � 1) and we neglect friction and heat transfer
((ν/ωA)1/2 � 1). The piston starts oscillating at t = 0 and we assume that initially
the fluid in the pipe is quiescent and uniform (u0 = 0). In such a case at least for
short times the linear (acoustic) approximation is valid. We can now calculate the
acoustic field by using the method of characteristics as described in section 4.2. We
will describe the calculation in detail. However, a reader only interested in the final
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result can jump to the final result, equation (5.16). The (x, t) diagram is shown in
figure 5.12.

t

x

I

II

III

IV

V

VI

t=x/c0

t=(2L−x)/c0

t=(2L+x)/c0

t=(4L−x)/c0

t=(4L+x)/c0

Figure 5.12 Wave pattern induced by a moving piston at x = 0, starting at t = 0.

In region I we have a quiescent fluid:

pI = 0 and u I = 0. (5.4)

In region II we have the c+ waves generated at the piston:

pII = p+II

(
t − x

c0

)
. (5.5)

Using the boundary condition u II = u p for x = 0 we find:

p+II (t) = ρ0c0u p(t) = ρ0c0û p E(t). (5.6)

In region III we have a superposition of the c+ waves emanating from region II and
the c− waves generated at the wall x = L:

pIII = p+II

(
t − x

c0

)
+ p−III

(
t + x − L

c0

)
. (5.7)

p−III can be determined by application of the boundary condition u III = 0 at x = L:

û p E
(

t − L

c0

)
− 1

ρ0c0
p−III(t) = 0. (5.8)
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Hence we have:

pIII = ρ0c0û p

{
E
(

t − x

c0

)
+ E

(
t + x − 2L

c0

)}
. (5.9)

In region IV we have a superposition of the c− waves from region III and the c+
waves generated at the piston x = 0:

pIV = p−III

(
t + x − L

c0

)
+ p+IV

(
t − x

c0

)
. (5.10)

p+IV is determined by applying the boundary condition u IV = u p at x = 0:

û p E
(

t − 2L

c0

)
− 1

ρ0c0
p+IV(t) = û p E(t) (5.11)

and so we find:

pIV = ρ0c0û p

{
E
(

t − x

c0

)
+ E

(
t + x − 2L

c0

)
+ E

(
t − x + 2L

c0

)}
. (5.12)

In region V we have the c+ waves from region IV superimposed on the c− waves
generated at the wall x = L:

pV = p+IV

(
t − x

c0

)
+ p−V

(
t + x − L

c0

)
. (5.13)

As before, p−V is determined by applying the boundary condition uV = 0 at x = L .
We find:

pV = ρ0c0û p

{
E
(

t − x

c0

)
+ E

(
t + x − 2L

c0

)
+E

(
t − x + 2L

c0

)
+ E

(
t + x − 4L

c0

)}
. (5.14)

If we now limit ourselves to the position x = 0 we see that after each period of time
2L/c0 a new wave is added to the original waves reflected at the wall and piston.
These original waves have now an additional phase of 2kL , where k = ω/c0.

Substituting x = 0 in (5.13) and generalizing the structure of the formula we find
for 2N L/c0 < t < 2(N + 1)L/c0:

p2N = 2ρ0c0û p eiωt

{
N∑

n=0

e−2iknL H
(

t − 2nL

c0

)
− 1

2

}
. (5.15)
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This structure could also have been obtained by using the method of images de-
scribed in section 4.6.2. We consider the piston as a volume source placed at
x = 0+. Placing image sources in an infinitely extended tube at x = ±2nL/c0

and summing up all the waves generated yields:

p = ρ0c0û p E
(

t − |x|
c0

)
+ρ0c0û p

∞∑
n=1

{
E
(

t − |x − 2nL|
c0

)
+ E

(
t − |x + 2nL|

c0

)}
. (5.16)

Note that this series contains always only a finite number of non-zero terms, be-
cause for large n the argument of the Heaviside function in E becomes negative.
So we have (for t > 0)

p

ρ0c0û p
e−iωt = e−ikx

N1∑
n=0

e−2iknL + eikx
N2∑

n=1

e−2iknL,

N1 =
⌊c0t − x

2L

⌋
, N2 =

⌊c0t + x

2L

⌋
,

where �q� denotes the integer part of q. It may be verified that after substitution of
x = 0 in (5.16) we find (5.15), with N = �c0t/2L�. The geometric series may be
summed2, so we obtain:

p

ρ0c0û p
e−iωt = (5.17)

e−ikx 1− e−2ik(N1+1)L

1− e−2ikL
+ eikx−2ikL 1− e−2ikN2 L

1− e−2ikL
if kL �= π
,

e−ikx (N1 + 1)+ eikx N2 if kL = π
,

where 
 = 1, 2, 3 . . .. For kL �= π
, and allowing for a small amount of damping
by giving ω a small negative imaginary part, p converges towards a finite value.
We call this the steady state limit. If kL = π
 for any 
 = 1, 2, 3 . . ., the pressure
increases without limit, at least as long as linear theory is valid. We call this a res-
onance of the tube, with the resonance frequencies given by 1

2
c0/L . The resulting

2Note that:
N∑

n=0

an =


1− aN+1

1− a
if a �= 1,

N + 1 if a = 1,

N∑
n=1

an =

a
1− aN

1− a
if a �= 1,

N if a = 1.
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equations are

p

ρ0c0û p
e−iωt →


−i

cos(kx − kL)

sin kL
if kL �= π
,

cos(kx)
c0t

L
if kL = π
.

(5.18)

When resonance occurs the linearized wave equation is only valid during the initial
phase of the build up and if there are no losses at the walls. As a result of the tem-
perature dependence of the speed of sound the compression waves tend to steepen
up and shock waves are formed. Shock waves are very thin regions with large ve-
locity and temperature gradients in which viscous force and heat transfer induce a
significant dissipation [4, 23]. This extreme behaviour will, however, only occur in
closed tubes at high pressures or at high amplitude (section 4.2).

In an open tube at high amplitudes vortex shedding at the pipe end will limit the
amplitude [38]. If we assume an acoustic particle displacement at the open pipe
end which is large compared to the tube diameter d we can use a quasi-stationary
model to describe (locally) the flow. This is a model similar to the one discussed
for an orifice in section 4.4.3.

Let’s assume that the tube is terminated by a horn as shown in figure 5.13. In

x = 0 x = L

u′

u′

Figure 5.13 Flow at an open pipe termination at high acoustic amplitudes.

such a case flow separation will occur only while the acoustic flow is outgoing
(figure 5.13a). Assuming a dominant fundamental harmonic û sinωt , the power We

corresponding to the energy losses due to the formation of the jet can be calculated
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from:

We = S

T

∫ T

0
u′�p dt (5.19)

where �p = − 1
2ρ0u′2 for 0 < t < 1

2 T and u′ > 0 because a free jet is formed
which cannot sustain a pressure difference3. In terms of the Vortex Sound theory
of Howe we would say that when the jet is formed during the outflow there is a
deviation from potential flow resulting into p′ = p′ex, while potential flow theory
would predict p′ = p′ex− 1

2ρ0u′2. This is due to the vorticity in the jet which results
into a source of sound, that we can represent by a pressure source �p = − 1

2ρ0u′2.

For 1
2 T < t < T and u′ < 0 we have:

�p = 0 (5.20)

because we have a potential inflow into the pipe. Hence:

We � −
1
2ρ0û3S

T

∫ 1
2 T

0
sin3 ωt dt = − 1

3π
ρ0û3S. (5.21)

The amplitude of the acoustic field in the tube can now be estimated by assuming
that the losses We at the open end balance the acoustic power Wp delivered by the
piston:

Wp = S

T

∫ T

0
u p p′(x = 0) dt. (5.22)

Assuming that friction losses at the pipe wall are negligible we have:

Wp � 1
2 Su pρ0c0û, (5.23)

where û is measured at the open pipe exit. Hence we find from We +Wp = 0:

û

c0
=
√

3π

2

u p

c0
. (5.24)

The model proposed here is valid when the Strouhal number based on the diameter
and the acoustical velocity is smaller than 1, i.e. ωd < û.

3We assume that due to turbulence all the kinetic energy in the jet is dissipated further down-
stream. We assume also that flow separation occurs at the junction between the pipe and the horn.
This is quite pessimistic, since the separation is expected to be delayed considerably by the gentle
divergence of the horn.
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The non-linear behaviour of resonators, occurring for example with flow sepa-
ration, makes such devices efficient sound absorbers. Sound is “caught” by the
resonator and dissipated by vortex shedding.

In many cases the most significant losses are friction losses at the wall. We will
discuss the influence of radiation from an open pipe end in section 6.7. When a
plane wave approximation is valid a harmonic acoustic field in a pipe with uniform
cross section can in the absence of mean flow still be described by:

p′ = p+ eiωt−ikx +p− eiωt+ikx . (5.25)

The wave number k, however, is now complex and is in first order approximation
given by:

k = k0 + (1− i)α (5.26)

where k0 = ω/c0 and α is the damping coefficient given by equation (2.13), derived
in section 4.5. (In a liquid one should assume γ � 1.)

Damping also affects the impedance Zc of an infinite tube. To leading order ap-
proximation one finds [111]:

Zc = p′

u′
= ±Z0

k0

k
(5.27)

where the sign indicates the direction of the wave propagation (+x or −x) and
Z0 = ρ0c0. We further see that wave speed c is affected:

c = c0
Re(k)

k0
(5.28)

While friction is relatively easily taken into account for harmonic waves, in the
time domain friction involves a convolution integral which makes the solution of
problems more difficult to analyse [23]. We will now further limit our discussion
to the case of harmonic waves. Hence we seek only for a steady state solution and
we assume that linear acoustics is valid.

As an example we consider a piston with a velocity u p = û p eiωt at x = 0 exciting
a tube of cross section S closed at x = L by a rigid wall. We neglect the radiation
losses at x = L (which we will discuss further in section 6.7). The boundary
conditions at x = 0 and x = L can be written in terms of equation (5.25) as:

û p = p+ − p−

Zc
(5.29)
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and

0 = p+ e−ikL −p− eikL (5.30)

so that we find:

p+ = Zcû p

1− e−2ikL
. (5.31)

In contrast to our earlier example p+ does not become infinitely large with reso-
nance because k is complex. The impedance Z p seen by the piston at x = 0 is
given by:

Z p = p+ + p−

û p
= −i Zc cotg(kL). (5.32)

Upon resonance, Re(k) = nπ/L with n = 1, 2, 3, ..., we find for the case αL � 1:

Z p � Zc

αL
. (5.33)

When the damping (αL) predicted by laminar boundary layer theory is small the
oscillation amplitudes may become so large that the acoustical boundary layers be-
come turbulent. This implies a non-linear energy dissipation as discussed in section
4.5.3.

5.2.3 The Helmholtz resonator (quiescent fluid)

The resonance conditions for a duct segment (5.25) imply that the tube length
should be of the order of magnitude of the acoustic wave length (kL = O(1)). In
many technical applications this would imply that resonators used to absorb sound
should be large (and expensive). A solution to this problem is to use a non-uniform
pipe in the shape of a bottle. When the bottle is small compared to the acoustic
wave length (for low frequencies), the body of the bottle acts as an acoustic spring
while the neck of the bottle is an acoustic mass (figure 5.14).

If the cross-sectional area Sb of the bottle is large compared to the cross sectional
area Sn of the neck, the acoustic velocities in the bottle will be small compared
to those in the neck. Hence we may in first order approximation assume that the
pressure perturbation p′in and the potential ϕin in the bottle are uniform (Bernoulli
in compact region). Furthermore as we have assumed the bottle neck (length 
) to

RienstraHirschberg 19 July 2006 20:00



5.2 Some resonators 137

Sb
V p′in

u′in � 0

u′n




p′ex

Sn

K
m

Figure 5.14 Helmholtz resonator as mass-spring system.

be short compared to the wave length, k
� 1, we can neglect compressibility and
apply Bernoulli in the form:

ρ0
dϕin

dt
+ 1

2
ρ0u2

in + p′in = ρ0
dϕex

dt
+ 1

2
ρ0u2

ex + p′ex. (5.34)

Neglecting non-linear terms (i.e. u2
in and u2

ex) we have:

ρ0
d

dt
(ϕin − ϕex) = p′ex − p′in. (5.35)

The potential difference ϕex − ϕin, given by

ϕex − ϕin =
∫ ex

in
u′ ·dx, (5.36)

will evidently scale on a typical length times a typical velocity. If we use the neck
velocity un , assuming the flow to be uniform, frictionless and incompressible in
a pipe with uniform cross section, then the corresponding length will be the neck
length 
, added by a small end correction δ (4.51) to take into account the iner-
tia of the acoustic flow at both ends just outside the neck (inside and outside the
resonator). Hence we have:

ϕ′ex − ϕ′in = (
+ 2δ)u′n. (5.37)

Intermezzo: End correction

As in many technical applications an orifice is used instead of bottle
neck (
 = 0), the use of a reasonable estimate for δ is important. For
an orifice with a circular aperture:

δ = 0.85
( Sn

π

) 1
2
. (5.38)
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138 5 Resonators and self-sustained oscillations

For an unflanged thin-walled open-pipe end we can use the approxima-
tion:

δ = 0.61
( Sn

π

) 1
2
. (5.39)

See also section 6.7. Values of δ for various other geometries are given
by Ingard [81].

Using (5.37) in Bernoulli (5.35) we find:

ρ0(
+ 2δ)
du′n
dt
= p′in − p′ex. (5.40)

We can find a second equation by applying the integral mass conservation law on
the volume V of the bottle. In linearized form we find for the density perturbation
ρ ′in:

V
dρ ′in
dt
= −ρ0u′n Sn. (5.41)

Assuming an adiabatic compression of the fluid in the bottle we can eliminate ρin

by using the constitutive equation:

p′in = c2
0ρ
′
in. (5.42)

Elimination of ρ ′in and u′n from (5.40) by using (5.41) and (5.42) yields:

(
+ 2δ)V

Snc2
0

d2 p′in
dt2
+ p′in = p′ex. (5.43)

Hence we see that the Helmholtz resonator reacts as a mass-spring system with a
resonance frequency ω0 given by:

ω2
0 =

Snc2
0

(
+ 2δ)V
. (5.44)

5.2.4 Non-linear losses in a Helmholtz resonator

The theory described in the previous section assumes that there is no-flow separa-
tion. Flow separation will certainly occur when the acoustic particle displacement
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has an amplitude comparable to the diameter of the neck. The Strouhal number
Sr = ω(Sn/π)

1/2/u′n yields a measure for this effect. When Sr � 1 flow separa-
tion will only occur locally at sharp edges of the neck (or orifice). When Sr = O(1)
flow separation will occur even if these edges are rounded off. In principle the ef-
fect of flow separation can under these circumstances be described by assuming the
formation of a quasi-stationary jet as for the pipe end (section 5.2.2). A multiple-
scales solution for this problem may be found in section 8.3.

In the case of an orifice with sharp edges, one should take into account the fact that
the jet diameter tends to be smaller than the orifice diameter by a factor β called
the vena contracta factor. For a thin orifice β � 0.6 [36]. Using a quasi-stationary
Bernoulli equation this implies an enhancement of the pressure loss�p by a factor
β−2. Furthermore losses occur for an orifice in both flow directions, while in a pipe
with horn we assumed losses to occur only upon outgoing acoustic flow.

5.2.5 The Helmholtz resonator in the presence of a mean flow

We consider a Helmholtz resonator of volume V , neck length 
 and neck surface
Sn in which we inject a continuous volume flow Q0 = u0Sn (figure 5.15). Using

Q0

V

p′in

u′in � 0




u0 + u′n Sn

Figure 5.15 Helmholtz resonator with a mean flow.

the equation of Bernoulli we now find

ρ0(
+ 2δ)
du′n
dt
+ 1

2ρ0(u0 + u′n)
2 + p′ex = p0 + p′in (5.45)

where we have applied Bernoulli between a point at the entrance of the neck and
a point just at the exit and we have neglected the velocities in the resonator (Sb 

Sn). We have assumed that the pressure in the jet is uniform and equal to p′ex, the
fluctuations due to an external acoustic source. (This is a reasonable assumption
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for u0/c � 1 and ω(Sn/π)
1/2/u0 � 1). Separating the zero and first order terms

in the acoustic perturbations and neglecting second order terms we find

p0 = 1
2ρu2

0 (5.46)

and

ρ0(
+ 2δ)
du′n
dt
+ ρ0u0u′n + p′ex = p′in. (5.47)

Using the linearized mass conservation law we have neglecting terms of order
(u0/c0)

2:

V
dρ ′in
dt
= −(ρ0u′n + ρ ′exu0)Sn. (5.48)

Eliminating ρ ′in by using the constitutive equation p′in = c2
0ρ
′
in and eliminating p′in

from (5.47) and (5.48) we find:

d2u′n
dt2
+ u0


+ 2δ

du′n
dt
+ ω2

0un = −ω
2
0 M0

ρ0c0
p′ex −

1

ρ0(
+ 2δ)

dp′ex

dt
.

ω0 is defined by equation (5.44) and M0 = u0/c0. For a harmonic excitation p′ex =
p̂ex eiωt we find:

ρ0c0ûn

p̂ex
= − M0 + iω1ω/ω

2
0

1− (ω/ω0)2 + i M0ω1ω/ω
2
0

(5.49)

where ω1 = c0/(
+2δ). We see that the mean flow induces a damping factor which
we might a priori not have expected because we did not assume friction losses nor
heat transfer.

The key assumption which has introduced damping is that we have assumed that
the pressure perturbation at the pipe exit is equal to the environment pressure per-
turbation pex. This is true, because the flow leaves the exit as a jet4, which implies
separation of the flow at the pipe exit and a Kutta condition to be added to an invis-
cid model (section 5.1)! This implies that a varying exit velocity un modulates the
vorticity shed at the edges of the pipe exit, which is, on its turn, a loss of kinetic
energy for the acoustic field. This confirms that the Kutta condition is indeed a
quite significant assumption [31].

4A very interesting proof of the fact that a quasi-stationary subsonic free jet cannot sustain any
pressure difference with the environment is provided by Shapiro [198].
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5.3 Green’s function of a finite duct

Formally, the Green’s function of a finite duct can be obtained if we neglect friction
and losses at the pipe terminations by using the method of images (section 4.6.2
and section 5.2.2). For a pipe segment 0 < x < L closed by rigid walls a source at
x = y in the pipe segment is represented by a row of sources (in an infinitely long
pipe) at positions given by (figure 5.16)

xn = ±(2n + 1)L ± y; n = 0, 1, 2, 3, ... (5.50)

The Green’s function is the sum of all the contributions of these sources:

Figure 5.16 Images of source at x = y.

g(x, t|y, τ ) = 1

2c0

∞∑
n=0

{
H

(
t − τ + x + (2n + 1)L − y

c0

)
+ H

(
t − τ + x + (2n + 1)L + y

c0

)
+ H

(
t − τ − x − (2n + 1)L − y

c0

)
+ H

(
t − τ − x − (2n + 1)L + y

c0

)}
. (5.51)

It is clear that such a formal solution has no simple physical interpretation.

Another representation for the 1-D Green’s function on [0, L] that might be useful
in some applications is found by a series expansion of the Fourier transform ĝ of
g:

ĝ =
∞∑

n=0

An fn(x) (5.52)

in a suitable basis { fn}. In this case we will not start from elementary solutions
of the wave equation. The functions fn we will consider will (only) satisfy the
boundary conditions at x = 0 and x = L , so that their sum will automatically
satisfy these conditions if this sum converges uniformly. Hence we will construct
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now a tailored Green’s function (section 3.1). Furthermore, it is evidently neces-
sary that the basis { fn} is complete, and convenient that it is orthogonal to some
suitable inner product. Let’s now for simplicity assume that the pipe segment is
limited by a rigid wall at x = 0 and an impedance ZL at x = L . Consider:

fn = sin(Knx) (5.53)

with Kn determined by the equation

tan(Y )

Y
= i

ZL

kL
(5.54)

with Kn L = Y . Note that for n →∞ (ZL �= 0)

Kn L � (n + 1
2 )π +

ikL

(n + 1
2 )π ZL

+ ... (5.55)

so that for large n, fn approaches the Fourier-sine series basis. The number of
solutions between 0 and (n+ 1

2)π (for n→∞) is not always exactly n. Depending
on ZL/kL it may differ by 1. For example, if ZL/kL = iC and C is real, there is
no purely imaginary solution Y = iσ with tanh(σ )/σ = −C if C > 0 or C < −1,
and exactly one solution if −1 < C < 0, which disappears to infinity if C → 0.
Finally, we note that { fn} is orthogonal to the L2 inner product:

( fn, fm) =
∫ L

0
fn(x) fm(x) dx . (5.56)

(Note: not .. f ∗m(x) ..), which is easily seen by direct integration:
If n �= m:∫ L

0
sin(Knx) sin(Km x) dx =

sin(Kn L − Km L)

2(Kn − Km)
− sin(Kn L + Km L)

2(Kn + Km)
= 0 (5.57)

after application of (5.54).
If n = m:∫ L

0
sin2(Knx) dx = 1

2 L − sin(2Kn L)

4Kn
= �n. (5.58)

We now seek an expression for the Green’s function, defined by:

d2ĝ

dx2
+ k2ĝ = −δ(x − y)

c2
0

(5.59)
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in the form (5.52). Substitution of the series, multiplication left- and right-hand
side by fm , and integrating over [0, L] yields (because of orthogonality):

(k2 − K 2
m)�m Am = − fm(y)/c

2
0. (5.60)

Hence we have:

ĝ(x, y) = 1

c2
0

∞∑
n=0

fn(x) fn(y)

(K 2
n − k2)�n

. (5.61)

We see explicitly that:

i) the Green’s function is indeed symmetric in x and y (source and observation
points) as stated earlier in section 3.1 (reciprocity), and

ii) any source with a frequency ω = Kn c0 (so that Kn = k) yields an infinite
field, in other words: resonance. Note that in general Kn is complex, so that
such a source strength increases exponentially in time.

When the frequency ω of the source is close to a resonance frequency this res-
onance will dominate the response of the pipe segment and we can use a single
mode approximation of the Green’s function. This is the approximation which we
will use when discussing the thermo-acoustic oscillations in a pipe segment (Rijke
tube, section 5.5).

5.4 Self-sustained oscillations of a clarinet

5.4.1 Introduction

The coupling of acoustic oscillations to mechanical vibrations is a technically im-
portant problem [218]. In some case such a coupling can cause the failure of a se-
curity valve. Instead of looking at a technical application we are going to consider
a musical instrument. The model used is very crude and only aims at illustrating
the principles of two methods of analysis:

– the stability analysis;

– the temporal simulation.
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In the first case we consider a linear model and deduce the minimal blowing pres-
sure necessary to obtain self-sustained oscillations. In the second case we consider
a simplified non-linear model developed by McIntyre et al. [117] which can be
used for time domain simulation. The aim of the simplification is to allow for a
real time simulation of a clarinet! We will restrict our discussion to the principle
of the solution of the problem. The results of the calculations can be found in the
literature.

5.4.2 Linear stability analysis

A simplified model of a reed instrument like a clarinet is a cylindrical pipe fed by
a pressure reservoir P0 (the mouth) through a valve (reed). The reed has a mass mr

and is maintained at a rest position hr by a spring of constant Kr . The aperture h
of the valve is assumed to be controlled by the pressure difference �p = P0 − p′
between the mouth pressure P0 and the acoustic pressure p′ in the pipe just behind
the reed (figure 5.17). The equation of motion of the reed is:

h uB

mr

Kr

Sr

p′

u′

L

S

p′ � 0

Figure 5.17 Simplified clarinet.

mr
d2h

dt2
+ γr

dh

dt
+ Kr (h − hr) = −Sr(P0 − p′) = −Sr�p. (5.62)

γr is the damping coefficient of the reed, Sr is the surface of the reed and h is the
aperture of the reed channel through which the air flows from the mouth to the
pipe. We assume that the flow in the reed channel is quasi-stationary and that at
the end of the reed channel a free jet is formed. Neglecting pressure recovery by
mixing of the jet with the air in the pipe we assume the pressure p′ to be uniform
in the jet and equal to the pressure at the pipe inlet.

The flow volume Qr of air into the pipe is given in this approximation (if we
neglect friction) by the equation of Bernoulli:

Qr = uBhw = hw(2|�p|/ρ) 1
2 sign(�p) (5.63)
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where w is the width of the reed channel and uB the (Bernoulli) velocity of the air
in the jet. The acoustic velocity u′ at the entrance of the pipe (x = 0) is given by:

u′ = Qr

S
(5.64)

where S is the pipe cross sectional area. If we consider a small perturbation of the
rest position (p′ � P0) we can linearize the equations and consider the behaviour
of a harmonic perturbation p′ = p̂ eiωt .

The steady state values of h and Qr are given by:

h0 = hr − Sr P0

K
, Q0 = u0h0w, u0 = (2P0/ρ0)

1
2 .

The linear perturbations are governed by the equations:

(−ω2mr + iωγr + Kr )ĥ = Sr p̂ (5.65a)

û B = −u0 p̂

2P0
(5.65b)

Q̂r = w(ĥu0 + h0û B). (5.65c)

We further assume that the acoustical behaviour of the pipe is described by an
impedance Z p(ω) so that:

p̂ = Z p Q̂r/S. (5.65d)

Since the system of equations 5.65a–5.65d is homogeneous, it can only be satisfied
if the determinant vanishes. This condition yields an equation from which we can
calculate ω for a given P0:

−ω2mr + iωγr + Kr

Sru0
=
( S

Z pw
+ h0u0

2P0

)−1
. (5.66)

If Im(ω) > 0 the perturbations are damped, and if Im(ω) < 0 the perturbations
grow in time. It is clear that the steady state amplitude in a clarinet can only be
reached by non-linear saturation of the system because linear theory predicts a
monotonically growing or decaying amplitude. When Im(ω) = 0 the perturbations
are neutral, they do not change in amplitude. If we assume Im(ω) = 0 equation
(5.66) becomes an equation for Re(ω) and P0. This allows to determine the thresh-
old of pressure above which oscillations occur and the frequency of the most un-
stable mode which starts oscillating. A discussion of the solution of this clarinet
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model, including non-linear effects, is given by Gazengel [58] and Kergomard in
[66].

It is interesting to note that in some cases the inertia of the flow in the reed which
we neglected is the main driving force for instability. This is for example the case
in harmonium reeds [201] and for valves in water like river gates [97]. A discussion
of the flow through double reeds and the vocal folds is given by Hirschberg [66].

5.4.3 Rayleigh’s Criterion

An interesting analysis of the problem of clarinet oscillation is already obtained by
considering the very simple quasi-stationary reed model:

h = hr − Sr�p

K
and Qr = hw

√
2|�p|
ρ0

sign(�p).

When �p = 0 there is obviously no flow because u = √2|�p|/ρ0 sign(�p)
vanishes. When�p > hr K/Sr = �pmax the reed closes and h = 0. Between these
two zero’s of Qr it is obvious that Qr > 0 and should be a maximum at a pressure
difference which we call critical �pcrit � 1

3�pmax. The acoustical power

W = 1

T

∮
p′ dV = 1

T

∫ T

0
p′

dV

dt
dt = 1

T

∫ T

0
p′Q ′r dt

produced by the fluctuating volume flow Q ′r = dV
dt should at least be positive. We

consider here an oscillation period T in order to sustain oscillations. Fluctuations
Q ′r = (dQr/dp′)p′ in Qr induced by pressure fluctuations in the pipe are negative
for �p < �pcrit and positive for �p > �pcrit. This explains the presence of a
blowing pressure threshold below which the clarinet does not play. The criterion∮

p′Qr dt > 0 is called the Rayleigh criterion for acoustical instability. We will
use it again in the analysis of thermo-acoustical oscillations.

5.4.4 Time domain simulation

Early attempts to describe the non-linearity of a clarinet were based on a modal
expansion of the acoustic field in the pipe. This implies that the Green’s function
was approximated by taking the contribution of a few (one to three) modes5 into

5Standing waves in the pipe closed at the reed end.
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account (equation (5.61)). The typical procedure is further to assume a weak non-
linearity which implies that a perturbation method like the method of averaging
can be used to calculate the time dependence of the modes [57]. A full solution is
obtained by the method of harmonic balance discussed by Gilbert [59].

As stated by McIntyre [117] the non-linearity in a clarinet is not weak. In fact the
most spectacular non-linearity is due to the limited movement of the reed upon
closing. The collision of the reed against the wall of the mouthpiece can result in a
chaotic behaviour [58]. The key feature of a clarinet mouthpiece is that this abrupt
non-linearity is replaced by a softer non-linearity because upon touching the wall
the reed gradually closes as it is bent on the curved wall of the mouthpiece (called
the lay) and its stiffness increases because the oscillating part is becoming shorter.

However, the high resonance frequency of the reed ω2
r = Kr/mr suggests that

a quasi-stationary model of the reed could be a fair first approximation. Hence
McIntyre [117] proposes to use the steady approximation of (5.62):

Kr (h − hr) = −Sr(P0 − p′) = −Sr�p (5.67)

combined with (5.63), (5.64) and (5.65d). The numerical procedure is further based
on the knowledge that the acoustic pressure p′ at the reed is composed of an outgo-
ing wave p+ and an incoming wave p− (result of the reflection of earlier p+ wave
at the pipe end):

p′ = p+ + p−. (5.68)

The pipe has a characteristic impedance Zc (= ρ0c0 when friction is neglected) so
that:

u′ = p+ − p−

Zc
. (5.69)

If we now define the reflection function r(t) as the acoustic wave p− induced by a
pressure pulse p+ = δ(t), we find:

p− = r ∗ p+ (5.70)

where ∗ indicates a convolution (equation C.10). Elimination of p+ and p− from
(5.68)–(5.70) yields:

p′ = Zcu′ + r ∗(Zcu′ + p′) (5.71)

where u′ is calculated at each time step by using (5.63), (5.66), and (5.67):

u′ = w
S

(
hr − Sr�p

Kr

)(2|�p|
ρ0

) 1
2

sign(�p). (5.72)
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The solution is obtained by integrating (5.71) step by step, using the previous value
of p′ to calculate u′ in the convolution of the right-hand side (5.71).

The interesting point in McIntyre’s approach is that he uses a reflection function
r(t) (which is the Fourier transform of R(ω) = (Z p − ρc)/(Z p + ρc)) rather than
z p, the Fourier transform of Z p. Using z p would have given the integral equation:

p′ = z p∗u′ (5.73)

which can be combined with (5.72) to find a solution. It appears, however, that
(5.73) is a numerically slowly converging integral because z p has an oscillatory
character corresponding to the response p′ of a close tube to a pulse u′ = δ(t)
(tube closed at pipe inlet).

The reflection function r is in fact calculated in a semi-infinite tube and therefore
has not such an oscillatory character (figure 5.18). So it appears that a Green’s

u′ = δ(t)
p′ = z p

p+ = δ(t) p−

p− = r

a)

b)

y = 0 y = L

Figure 5.18 Difference between z p and r .

function which is not tailored may be more appropriate than a tailored one.

5.5 Some thermo-acoustics

5.5.1 Introduction

We have focused our attention until now on wave propagation and interaction of
acoustic fields with isentropic flows. In section 2.6 we have seen that variations s′
in entropy should act as a volume sound source (if we use p′ as acoustic variable).
We will now discuss such effects as an interesting example of self-sustained os-
cillations in resonators. At low Mach numbers in gases, entropy variations due to
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dissipation are negligible (order 0.2 M2). Entropy fluctuations occur mainly as a
result of combustion (or vapour condensation) in the bulk of the flow or as a result
of heat conduction at the wall. Mixing of hot and cold gases results into fluctua-
tions of the entropy caused by the unsteady heat conduction (equation 2.85). For
ideal gases one can, however, show that this sound source has a vanishing mono-
pole strength (Morfey [127], Obermeier [146]). Convection of entropy spots during
the mixing of a hot jet with the environment dominates the low Mach number be-
haviour (Crighton [34], Morfey [127]). This sound source has the character of a
dipole.

Combustion instability is often triggered by the strong dependence of combustion
processes on temperature. The reaction rates depend exponentially on T . Hence
temperature fluctuations associated with pressure fluctuations will induce variation
in combustion rate. This implies a source of sound which, if it is in phase with
the acoustic field, can lead to instability. Even in free space this implies a strong
increase in sound production. We experience this effect when we ignite the flame
of a gas burner. Placed in a closed tube a flame can couple with standing waves.
This type of instability is known in aircraft engine as a re-heat buzz (Keller [93],
Bloxsidge et al. [16]). The “singing flame” has already been discussed extensively
by Rayleigh [167]. More recent information on the interaction of combustion with
acoustic is found in Crighton et al. [34], Candel & Poinsot [20], McIntosh [116],
and Putnam [164].

We will now focus our attention on the effect of unsteady heat transfer at walls.
This type of interaction has already attracted the attention of Rayleigh [167] in
the form of the Rijke tube oscillation. This experiment was carried our first by De
Rijke around 1848 [182]. He found that placing an electrically heated gauze in
the lower part of a vertical tube open at both ends would induce strong acoustical
oscillations. De Rijke considered the use of such a device as an organ pipe. The
subject has been studied as a model for combustion instability by many scientists,
among which Merk [120], Kwon and Lee [100], Bayly [6], Heckl [64], Gervais
[157], and Raun [166].

Closely related phenomena of acoustical oscillations induced by a temperature gra-
dient in a tube is used by scientists to detect the level of liquid Helium in a reser-
voir. This phenomenon has been extensively studied by Rott [133, 188, 189, 190,
191, 227], in a very systematic series of papers. The fascinating aspect of this
phenomenon is that it can be inverted, acoustic waves interacting with a wall in-
duce a transfer of heat which can be used to design an acoustically driven cooling
machine. Such engines have been studied by Wheatley [221], Radebaugh [165]
and Swift [203]. The ultimate engine consists of two thermo-acoustic couples (el-
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ements with a a temperature gradient): one at the hot side which induces a strong
acoustic field and a second at the cold side which is driven by the first (figure 5.19)
[204]. This is a cooling machine without moving parts!

driver cooler

very hot cold very cold cold

Figure 5.19 Heat driven acoustical cooling engine.

We will limit our discussion to a simple analysis of the Rijke tube oscillation.

5.5.2 Modulated heat transfer by acoustic flow and Rijke tube

We consider a thin strip of metal of temperature Tw and width w aligned along
the mean flow direction in a uniform flow u∞. Along the strip viscous and thermal
boundary layers δV (x) and δT (x) will develop. We assume that δV /w and δT /w

are small and that ωw/u∞ � 1, while δV /δT = O(1). For small fluctuations u′
of u∞ around an average value u0 the fluctuations in the heat transfer coefficient
can be calculated as described by Schlichting [195] for any mean flow of the type
u0 ∼ xn (wedge flow). We now limit ourselves to the flat plate (n = 0) and we use a
low frequency limit from which the memory effect will become more obvious than
from Schlichting’s solution. We further approximate the velocity and temperature
profiles in the boundary layers by:

u(y) = u∞
δV

y (5.74)

T (y)− Tw
T∞ − Tw

= y

δT
. (5.75)

Such an approximation is only valid for low frequencies and small perturbation
amplitudes, corresponding to ωw/u∞ � 1 and u′/u0 � 1. Outside the boundary
layers the flow is uniform. In this approximation the viscous stress τw at the wall
is given by:

τw = ηu∞
δV

(5.76)
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and the heat transfer q at the wall by:

q = −K
(∂T

∂y

)
y=0
= −K

T∞ − Tw
δT

. (5.77)

Using an integral formulation of the conservation law in boundary layer approxi-
mation we find [195]:[ ∂

∂t
+ u∞

3

∂

∂x

]
δ2

V = 4ν − 2δ2
V

u∞
∂u∞
∂t

(5.78a)[ ∂
∂t
+ 2

3
u∞

( δT

δV

) ∂
∂x

]
δ2

T = 4a + 1

3
u∞

( δT

δV

)3 ∂

∂x
δ2

V for δT < δV

(5.78b)[ ∂
∂t
+ u∞

(
1−

(δT

δV

)2) ∂
∂x

]
δ2

T = 4a − u∞
(2

3
− δT

δV

) ∂
∂x
δ2

V for δT > δV

(5.78c)

where a is the thermal diffusivity of the gas:

a = K

ρCP
. (5.79)

Note that we have used the assumption (Tw − T∞)/T∞ � 1 in order to keep the
equations simple. This is certainly a very crude approximation in a Rijke tube. The
boundary conditions are:

δV (0) = δT (0) = 0 at x = 0. (5.80)

In air we have Pr < 1 and hence in general δV < δT . We will, however, use further
the assumption Pr = 1 because we do not expect an essentially different physical
behaviour.

The stationary solution of (5.78a) is:

δV =
(12νx

u0

) 1
2

(5.81)

while δT can be calculated from (5.78b):

δT = δV . (5.82)

Using the notation δ0 = δT = δV for the stationary solution we find in linear
approximation:[ ∂

∂t
+ 1

3
u0
∂

∂x

]
δ′V = −

δ0

u0

∂u′

∂t
− 1

3
u0

(δ′V
δ0
+ u′

u0

)∂δ0

∂x
(5.83a)[ ∂

∂t
+ 2

3
u0
∂

∂x

]
δ′T = +

1

3
u0
∂δ′V
∂x
+ 1

3
u0

(δ′V − δ′T
δ0

− u′

u0

)∂δ0

∂x
, (5.83b)
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hot grid

x=L

x=0

x=−L u0

�

Figure 5.20 Rijke tube.

where u∞ = u0+u′. These equations can be solved by in-
tegration along the characteristics: (x = 1

3 u0t) for (5.83a)
and (x = 2

3u0t) for (5.83b). We see that the perturbations
in δ′T move along the strip with a phase velocity 2

3 u0 which
implies a “memory” of the heat transfer q for perturba-
tions u′ of the mean flow. This memory is crucial for the
understanding of the Rijke tube instability.

The Rijke tube is an open pipe of length 2L (figure 5.20).
In the pipe we place a row of hot strips (or a hot gauze).
When the tube is vertical a flow u0 will be induced by
free convection (the tube is a chimney). When the tube is
horizontal we impose u0 by blowing.

It appears that the tube starts oscillating at its fundamental
frequency f0 = c/4L when the heating element is placed
at x = − 1

2 L , at a quarter of the tube length in the upstream
direction (at the lower part of the tube for a vertical tube).
We will now explain this. Note that some excitation of
higher modes can be obtained but these are weak because of increased radiation
losses at high frequencies. Hence we will assume that only the fundamental mode
can be excited. This corresponds to a single mode expansion of the Green’s func-
tion (5.61). As proposed by Rayleigh [167] we start our analysis by placing the
warming element at the center of the tube (x = 0).

x = L

x = 0

x = −L u0

p′ = p̂(x) cosωt

u′ = −d p̂

dx

sinωt

ρ0ω

Figure 5.21 Pressure p′ and acoustic velocity u′ distribution for the fundamental mode.

As shown in figure 5.21 the acoustic velocity u′ at x = 0 will vanish for the funda-
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mental mode. The variation of heat transfer q is only due to the temperature fluctu-
ations T ′ = (γ − 1)γ −1 p′ of the gas in the main flow. If we neglect the “memory”
effect of the heat capacity of the boundary layers the heat flux q decreases when
p′ increases because Tw − T is reduced.

The acoustic effect of the unsteady heat transfer q is given in a quantitative way by
the linearized equation 2.67 in which (2.68) has been substituted:

1

c2
0

∂2 p′

∂t2
−∇2 p′ � ρ0

c2
0T0

(∂T

∂ρ

)
S

∂

∂t
∇·q (5.84)

which corresponds to a volume source term ∂2(βρ f )/∂t2 in (2.63) or in linearized
form ∂(m/ρ0)/∂t . As derived in section 2.7 the power W produced by the source
is (2.80):

W =
∫∫∫

V

〈
p′

m

ρ0

〉
dV . (5.85)

This equation can also be derived from the equation for the work A performed by
volume variation dV :

A =
∮

p dV (5.86)

which can be written as:

A =
∫ T

0
p
(dV

dt

)
dt (5.87)

where dV/dt = ∫
m/ρ0 dV and T = 2π/ω is the oscillation period. The rate

of volume injection dV/dt corresponds to the volume integral
∫

V ∇·q dx =∫
S q ·n dσ which is the integral of the heat transfer from the heating element.

Furthermore, as the transfer of heat from the wall to the gas implies an expansion
of the gas we can also understand (5.84) in terms of (5.87).

We now easily understand that as q is opposite in phase with p′ the presence of a
hot element at x = 0 will damp oscillations of the fundamental mode of the pipe.
Hence we understand that the Rijke tube oscillation is due to modulation of q by
the acoustic velocity fluctuations u′. An optimal amplitude of q is obtained just at
the end of the pipe at x = −L where u′ has the largest amplitude. However, at this
place p′ is close to zero so that we see from (5.85) that the source is ineffective at
this position. We therefore see that the position x = − 1

2 L is a compromise between
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154 5 Resonators and self-sustained oscillations

an optimum for p′ and an optimum for q. We still have to understand why it should
be x = − 1

2 L and not x = 1
2 L . The key of this is that for x < 0 the pressure p′

increases when the acoustic velocity u′ enters the pipe (u′ > 0) upwards while
for x > 0 the velocity is downwards at that time. If the heat transfer would react
instantaneously on u′ then q would vary as sin(ωt) while p′ varies as cos(ωt). As
a consequence W integrated over a period of oscillation would vanish. Hence the
occurrence of oscillations is due to a delay τ in the reaction of q on u′. As the delay
τ is due to the “memory” of the boundary layer we expect that τ > 0, since the
boundary layer integrates, and cannot anticipate on perturbations of u′.

u′(x > 0, t)
���

q(x, t)
�

u′(x < 0, t)�
��

τ
	

p′(x, t)

�
t

Figure 5.22 Sketch of time dependence of p′ and u′ in the upper (x > 0) and lower (x < 0)
part of the tube. A memory effect of 1

2π will shift the phase of the heat transfer q
from that of u′ (the quasi-steady approximation) toward that of p′. It is the part of
q which is in phase with p′ that produces the sound in a Rijke tube.

As we see from the diagram of figure 5.22 for ωτ = 1
2π , the delayed heat flux q is

in phase with p′ if x < 0. Pulsations induced by a hot grid placed at x > 0 would
involve a larger delay: ωτ = 3

2π . As we will explain such a condition implies a
very low flow velocity and hence much weaker oscillations. In practice this oscil-
lation mode at low velocities is not observed. The time delay τ is determined by
the time that a perturbation in δ′T remains along the strip. When we blow very hard
the residence time τ of a perturbation δ′T in the boundary layer on the strip will be
very short because we expect from (5.83b) that:

τ = O
( 3w

2u0

)
(5.88)

where w denotes the length of the heated strip in flow direction. When we do not
blow hard enough the boundary layers δ0 will be very thick. The hot gas remains
around the warming element blocking the heat transfer. Also when π ≤ ωτ ≤
2π we expect that the oscillations will be damped out. Hence, an optimum of
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pulsations may be expected for ωτ = 1
2π :

wω

u0
= π

3
. (5.89)

This behaviour is indeed verified by experiments. Of course in order to obtain a
stable oscillation the temperature Tw should reach a critical limit. For a horizontal
tube at a fixed u0, imposed by blowing through the pipe, this is less critical6 than
in a vertical pipe where the temperature element also drives the main flow u0. In
experiments with a horizontal pipe it is quite easily observed that blowing too hard
reduces τ such, that pulsations disappear.

While we have seen that certain conditions are favourable for an oscillation we did
not yet discuss the non-linear effects leading to saturation. The most obvious effect
is that when the acoustic particle displacement becomes comparable to the width
of the strip:

u′

ωw
= O(1), (5.90)

back flow will occur from the wake towards the strip. The strip is then surrounded
by pre-heated gas and this blocks the heat transfer. Note that at very large ampli-
tudes (u′/ωw > 1) there is a wake upstream of the strip during part of the oscilla-
tion period. We now understand, by combination of (5.89) and (5.90), why in the
experiment one finds typical amplitudes of the order of u′ = O(u0). The proposed
saturation model has first been used by Heckl [64]. It is interesting to note that
Rayleigh [167] describes this non-linear effect of saturation as a “driving” mecha-
nism.

A comprehensive theory of the Rijke tube oscillation, including non-linear effects
and the influence of large temperature differences, has not yet been presented. We
see that such a theory is not necessary to predict the order of magnitude of the
oscillation amplitude. On the contrary, it is sufficient to isolate the essential limiting
non-linearity.

6Since the design of a vertical Rijke tube driven by natural convection is not easy we provide
here the dimensions of a simple tube. For a glass pipe of 2L=30 cm length and an inner diameter
of d =2.5 cm, one should use a metal gaze made of wires of 0.2 mm to 0.5 mm diameter, the wires
being separated by a distance in the order of 1 mm. This gaze can be cut in a square of 2.5×2.5 cm2.
The bended corners can be used to fix the gaze at its position (x = − 1

2 L). A small candle is a very
suitable heat source. The pipe will produce its sound after the candle is drawn back.
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156 5 Resonators and self-sustained oscillations

5.6 Flow induced oscillations of a Helmholtz resonator

In view of the large amount of applications in which they occur, flow induced pul-
sations of a Helmholtz resonator or wall cavity have received considerable attention
in the literature [8, 19, 38, 184, 43, 63, 73, 74, 79, 119, 143, 144, 186]. In principle
the flow instability has already been described qualitatively in section 5.1. We will
now more specifically consider a grazing uniform flow.

We will now discuss models which can be used to predict the order of magnitude
of the pulsations. The configuration which we consider is shown in figure 5.23.
Self-sustained oscillations with a frequency ω close to the resonance frequency ω0

of the resonator occur when the phase condition for a perturbation in the feedback
loop (shear layer/resonator) is satisfied and the gain is sufficiently large. When
ω = ω0 we find a maximum of the pulsation amplitude and the phase condition is
entirely determined by the shear layer. In principle we should add to the convection
time of the perturbation along the shear layer a phase shift at the “receptivity” point
upstream and another at the “excitation” point downstream. These corrections are
either due to “end corrections” or to the transition from a pressure perturbation p′
in the resonator to a velocity or displacement perturbation of the shear layer. We
now ignore these effects for the sake of simplicity and because we do not have
available any theory that predicts these corrections.

u0

u0

V

V

w

Figure 5.23 Helmholtz resonator in a wall with grazing flow.
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In both configurations of figure 5.23 in first order approximation perturbations of
the shear layer (at the opening of the resonator) propagate with a velocity uc of the
order of 1

2u0. It appears from experiment that when the travel time of a perturbation
across the opening width w roughly matches the oscillation period 2π/ω0 of the
resonator (or a multiple of 2π/ω0) pulsations occur. Typically one finds a velocity
uc � 0.4u0. Hence the phase condition for instability is [66]:

ω0w

0.4u0
= 2πn; n = 1, 2, 3, ... . (5.91)

More complex phase condition depending on the geometry and the Mach num-
ber has been reported by [13, 184, 186]. The first hydrodynamic mode (n = 1) is
usually the strongest because it corresponds with the highest velocity at which pul-
sations occur. Furthermore when the hydrodynamic wave length (w/n) becomes
comparable to the gradient length δ in the grazing velocity profile (boundary layer
thickness at the wall) the flow becomes stable and the perturbations are damped.
Typically for:

δω0

0.4u0
> 2 (5.92)

the flow is linearly stable. A currently used cure for pulsations is to place a device
called “spoiler” which increases δ just upstream of the cavity [18, 184]. Equation
(5.92) can be used to choose a reasonable spoiler height. However, we found in
some experiments that this is no guarantee for stability [18]. Equation (5.92) im-
poses an upper bound to the hydrodynamic mode instability. In most experiments
mode numbers higher than n = 5 are not observed. A remarkable exception is the
oscillation found inside solid propellant rockets for which 6 ≤ n ≤ 12 [216].

It is often assumed that the perturbations along the shear layer grow according
to a linear theory. It appears that a linear theory is only valid for low pulsation
amplitudes, in the range of u′/u0 ≤ 10−3. In the experiments one observes in most
cases for a grazing uniform flow a spectacular non-linear behaviour of the shear
layer [18]. The vorticity of the shear layer is concentrated into discrete vortices. At
moderate acoustic amplitude u′/u0 = O(10−1) one can assume that the acoustic
field only triggers the flow instability but does not modify drastically the amount of
vorticity � shed at the upstream edge of the slot. This leads to the model of Nelson
[18, 66, 143, 144] in which one assumes a vortex of strength � given by:

d�

dt
= d�

dx
· dx

dt
= u0 · 1

2u0 (5.93)

travelling at a velocity uc = 0.4u0 across the slot (see figure 5.7). A new vortex
is generated following Nelson’s experimental observations at the moment that the
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acoustic velocity u′ is zero and is increasing (directed into the resonator, p′ in the
resonator is at a minimum).

Using Howe’s analogy as described in section 2.6 and 2.7 one can calculate the
acoustic pulsation amplitude. As the source strength ∇·(ω×v) is independent of
u′ we find a finite amplitude by balancing the friction, radiation and heat transfer
losses with the power generated by the vortices. As friction and radiation losses
scale on u′2, we would expect from this theory to find pressure amplitudes scaling
with the dynamical pressure of the flow p′ = O( 1

2ρu2
0). This occurs indeed when

the edges of the slot are sharp. Typically, the acoustic power W generated by vor-
tices due to instability of the grazing flow along an orifice of area (w× B) is given
by

W = O(5 · 10−2) 1
2ρ0u2

0wBu′

where u′ is the amplitude of the acoustic velocity fluctuations through the orifice.

u0

vortex

V

Figure 5.24 Rounded upstream edge.

The amplitude of the pulsations depends critically on the shape of the edge at which
vortex shedding ocurs. This effect can be understood as follows. Upon formation
of a new vortex the acoustic field u′ is directed towards the interior of the resonator.
Using Howe’s formula:

W = −ρ0

∫∫∫
V

〈(ω×v)·u′〉 dV, (2.98)

we see that the vortex is initially absorbing energy from the acoustic field (figure
5.25) because −(ω×v) is opposite to u′.

At a sharp edge u′ is large because the potential (acoustic) flow is singular. When
an edge is rounded off u′ is not singular and the initial absorption will be modest.
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−(ω×v)

v

u′

W

t

absorption

production

T

Figure 5.25 Absorption of acoustic energy by vortex shedding.

The net sign of W over a period T = 2π/ω0 of oscillation depends of course also
on the amount of energy produced by the vortex in the second half of the acoustic
period when the acoustic velocity u′ is directed outwards from the resonator [18,
98]. Of course, when u0 is so large that the travel time (w/0.4u0) of the vortex
across the slot is shorter than half a period (w/0.4u0 <

1
2 T ), then only absorption

occurs. Self-sustained oscillations are impossible in this case. This effect can easily
be experienced by whistling with our lips. If we increase the blowing velocity the
sound disappears.

The main amplitude limitation mechanism at high amplitudes, u′/u0 > 0.2, is the
shedding of vorticity by the acoustic flow. At the upstream edge this implies an
increase of the shed vorticity � with u′ and a dependence of the initial damping
on u′3. Howe [75] observes that at high amplitudes the vortex sound absorption
scales on u′3 whereas the sound production scales on u′u2

0. Hence, when those
effects balance each other, the amplitude u′ scales on u0. This behaviour is in-
deed observed [18, 98]. A typical amplitude observed in Helmholtz resonators is
u′/u0 = O(10−1). This amplitude is also typical of a recorder flute or a whistle
[66, 211].

In [98] it is observed that at very high amplitudes (u′/u0 = O(1)) in a resonator
formed by side branches along a pipe, non-linear wave propagation resulting into
the generation of non-resonant cavity modes was a major amplitude limiting mech-
anism. Another possible mechanism at high amplitudes is the transition of acousti-
cal flow from laminar into turbulent (section 4.5.3).

The discussion given here provides some qualitative indications for various ba-
sic phenomena of cavity oscillation. Models as the one of Nelson [143, 144] pro-
vide insight but are not able to predict accurately the amplitude of the oscillations.
In many engineering applications insight is sufficient for taking remedial mea-
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sures. However, when a prediction of the amplitude is required a more detailed
flow model is needed. Such models are not yet available.

Exercises

a) Calculate the impedance seen by a piston placed at the end x = 0 of a tube closed at
x = L by an impedance Z(L). Neglect friction in the tube. For Z(L) = ∞ (closed
wall) calculate the power generated by the piston. Calculate the amplitude of the
acoustic field for Z(L) �= ∞.

b) When the impedance Z(L) at a pipe end is small, |Z(L)| � ρ0c0, one can con-
sider the pipe being terminated at virtual position x = L + δ by a purely resistive
impedance Z(L)′ = Re Z(L). δ is called the end correction of the pipe. Derive a
relationship between δ and Z(L).

x = 0 x = L x

S u p u p

Sp

Figure 5.26 Two pistons along a pipe.

c) Consider two identical pistons of surface Sp placed at a distance L from each other
along an infinitely extended pipe (figure 5.26) of cross sectional surface S. Assume
that the two pistons move harmonically with the same velocity û p eiωt . Show that
under specific conditions the acoustic field vanishes for x > L and x < 0. How
large is the amplitude of the acoustic field under these circumstances for 0 < x <
L ?

d) Consider a piston placed at the end of a closed side branch of cross sectional sur-
face S1 along a main pipe with a cross sectional surface S2 (figure 5.27). The side
branch has a length L. The edges of the junction at the main pipe are rounded off.
Calculate the amplitude p̂ of the acoustic field at the piston following linear theory
for ωS1/2/c < 1 as a function of S1/S2 and L. Estimate the largest amplitudes that
may be reached before linear theory fails.

e) What is the impedance Z p of the piston for the configurations of figure 5.28a, b and
c. Assume that radiation losses at the open ends are negligible. Neglect friction in
the pipe. Are these configurations at certain critical frequencies equivalent to closed
resonators?

f) Consider a clarinet as a cylindrical pipe segment of 2 cm diameter and 1 m long
driven by a piston with a velocity u p = û p eiωt . Assume that û p = 1 m/s which
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S2

S1

u p

L

Figure 5.27 T-junction.

a)

p′ � 0

L

S2

L
u p

S1

©1

©2 ©3

b)

S S

S S

L
2L

Lu p

©1

©2 ©3

©4

©5

c)

p′ � 0 p′ � 0

L LS

Su p©1 ©2

Figure 5.28 Coupled T-junctions.

is a typical order of magnitude. Assume that the pipe is driven at the first (lowest)
resonance frequency. Calculate the pressure at the piston assuming an ideal open
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end behaviour without radiation losses or flow separation. Calculate the amplitude
of the fluid particle displacement at the pipe end. Calculate the same quantities
if a quasi-stationary model is used at the pipe end to describe flow separation of
the outgoing acoustic flow while friction is neglected. Is a quasi-stationary model
reasonable?

u p
p′ � 0

L1 L2 L3

S1 S2 S1

u p
p′ � 0S1 S2 S1

L1 L2 L3

Figure 5.29 Resonators in a pipe.

g) A pipe segment with a different cross sectional area S2 than the cross section S1
of the rest of the pipe can be used as a filter to prevent the propagation of waves
generated by a piston. Two solutions can be considered S2 > S1 and S1 < S2
(figure 5.29a and b). Assuming an ideal open end at x = L1 + L2 + L3, provide a
set of equations from which we can calculate the amplitude of the acoustic velocity
û end at the pipe end for a given velocity û p of the piston.

h) Introduction:
A possible 3-D model for a kettle drum consists of a cavity in free space, with
acoustic perturbations p = p̂ eiωt in- and outside the cavity:

∇2 p̂ + k2 p̂ = 0, iωρ0û +∇ p̂ = 0

for k = ω/c0. The cavity is hard-walled on all sides (û·n = 0) except one, which
is closed by an elastic membrane (tension T , mass density σ ). The membrane dis-
placement η = η̂ eiωt is driven by (and drives...) the pressure difference across the
membrane:

T∇2η̂ + ω2σ η̂ = pupper − plower

The normal velocity û·n at both sides of the membrane is equal to ∂η/∂ t =
iωη̂ eiωt , as the air follows the membrane.
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A basic musical question is: what is the spectrum of this system, i.e. for which (dis-
crete) set {ωn} does there exist a solution without forcing? Note that since the waves
radiate away into free space any solution will decrease and die out (called “radiation
damping”), and (in general) the possible ωn’s will be complex, with Im(ωn) > 0.

Problem:
A 1-D variant of the kettle drum problem is a semi-infinite pipe (0 ≤ x < ∞) of
typical radius a, closed at x = 0, and a piston-like element at x = L (modelling the
membrane) driven by the pressure difference across x = L, and kept in position by
a spring.

p̂x x + k2 p̂ = 0 for x ∈ (0, L) ∪ (L,∞)
−8T a−2η̂ + ω2σ η̂ = p̂(L+)− p̂(L−) at x = L

p̂x = 0 at x = 0

p̂x = ω2ρ0η̂ at x = L

outgoing waves for x →∞.
Determine the equation for ω, solve this for some simple cases, and try to indicate
the general solution graphically in the complex ω-plane for dimensionless groups
of parameters. Are there solutions with Im(ω) = 0? How are these to be interpreted
physically?

i) Consider the Helmholtz resonator as an acoustic mass-spring system. What are the
acoustic mass m and the spring constant K of this mass-spring system.

j) Assuming that p′ex = 0, how would the Helmholtz resonator react to a periodic
volume injection Q = Q̂ eiωt into the bottle (e.g. a piston moving in the bottom
wall).

L

u p

Sn
V

S

Figure 5.30 Helmholtz resonator driven by a piston

k) Consider a Helmholtz resonator in a semi-infinite pipe driven by a piston at x = 0
(figure 5.30). Calculate the transmitted acoustic field following linear theory. What
is the condition for which there is no transmission.
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Sp V Sd

Figure 5.31 Two orifices

l) Consider the volume V between two orifices of equal aperture surface Sd � Sp in a
pipe of surface Sp (figure 5.31). Calculate the transmission coefficient and reflection
coefficient following linear theory for an acoustic wave p+ eiωt−ikx incident from
the left.

S

V




air

water
Sp

Figure 5.32 Exercise m

m) Consider a volume V filled with air connected by a short pipe of length 
 to a pipe
filled with water (figure 5.32). Calculate the reflection and transmission coefficient
following linear theory for a wave p+ eiωt−ikx incident from the left.

n) Assuming ρ0ω
û 
 1
2ρ0û2, estimate the maximum acoustic velocity û which can

be reached for given volume injection Q̂ eiωt in a Helmholtz resonator if friction
and heat transfer are neglected. Compare this with the maximum pressure which
can be reached in a 1

4λ pipe resonator (with one open end).

o) Calculate the value of p̂in/ p̂ex at resonance for a Helmholtz resonator in the pres-
ence of mean flow of velocity u0 through the neck.

p) Using the integral formulation (3.12) on [0, L] using the Green’s function ga cor-
responding to the geometry of figure 5.18a (with (∂ga/∂y)y=0 = 0 and (ga)y=L

corresponding to the impedance of the pipe seen from the position y = 0) we find:

p′ = −ρ0c2
0

∫ t

−∞

[(∂ga

∂τ

)
u′(y, τ )

]
y=0

dτ.

Derive this equation starting from (3.12). This equation is equivalent to (5.73).
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q) Calculate the expected acoustic optimal amplitude in a vertical Rijke tube of 1 m
length and 5 cm diameter in which a gauze with a strip of width w = 1 mm has
been placed at x = −0.25 m. Do you expect that at this amplitude vortex shedding
at the pipe end will be a significant acoustic energy loss mechanism?

r) Consider a Helmholtz resonator with a volume V and a slot aperturew × B placed
in a wall with a grazing flow (figure 5.23). Given that the maximum power is given
by

W = 0.05 1
2ρ0u2

0ûwB

estimate the amplitude of the acoustic pressure p̂ in the resonator for air if:

V = 3 m3, w = 0.3 m, B = 0.5 m.

(A car with open roof!). Assume that the effective neck length is 
 � w.

s) Give an order of magnitude of the acoustical pressure fluctuations in a clarinet.
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6 Spherical waves

6.1 Introduction

In the previous chapter we have considered the low frequency approximation of
the acoustics of pipes and resonators. Radiation of sound from such systems was
assumed to be a small effect for the internal acoustic field, and therefore could
be neglected in our analysis. However, if sound would not escape we would not
hear it. Hence, for the calculation of environmental noise the radiation is crucial.
Furthermore, as sound often is transferred through walls, the vibration of elastic
structures is an essential part of the radiation path. To keep things manageable we
will assume that the vibrating objects are small compared to the wave length (com-
pact bodies) and that we radiate sound into an unbounded homogeneous quiescent
fluid (free space).

Starting from an exact solution of the acoustic field induced by the pulsation and
translation of a sphere (section 6.2) we will derive an expression for the free field
Green’s function G0 (6.36,6.37). Taylor’s series expansion of G0 will be used to
introduce the concepts of monopole, dipole, quadrupole, etc, and multipole expan-
sion (section 6.3). The method of images will appear to be a very powerful tool to
get insight into the effect of boundaries on radiation (section 6.4). After a summary
of the classical application of Lighthill’s analogy to free jets (section 6.5) we will
consider the radiation of a compact body by using Curle’s formalism (section 6.6).
This will be used to get insight into the sound generated by a ventilator. Finally the
radiation from an open pipe termination will be discussed (section 6.7).

Note. Two-dimensional acoustic waves have a complex structure as may be seen
from the Green’s functions given in Appendix E (see the discussion by Dowling et
al. [42]).

6.2 Pulsating and translating sphere

The wave equation in 3-D allows quite complex solutions. However, for the par-
ticular case of a spherically symmetric acoustic field the wave equation reduces
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to:

1

c2
0

∂2 p′

∂t2
− 1

r2

∂

∂r

(
r2 ∂p′

∂r

)
= 0 (6.1)

where r is the distance between the observation point and the origin. The key for
solving (6.1) is that we can formulate a 1-D wave equation for (rp′):

1

c2
0

∂2(rp′)
∂t2

− ∂
2(rp′)
∂r2

= 0. (6.2)

This result can easily be understood because acoustic energy scales with p′2 (equa-
tion 2.78a). Hence, as the surface of a spherical wave increases with r2 the ampli-
tude p′(r) should decrease as r−1 to keep energy constant as the wave propagates.

Compared to 1-D waves the relationship between pressure p′ and acoustic velocity
v′ now shows a drastically new behaviour which depends on the ratio of r and
the acoustic wave length. In three dimensions we have a region with kr � 1
called “near field” in which we find a behaviour of v′ which is close to that of an
incompressible flow, while for kr 
 1 we find a “far field” region in which the
waves behave locally as plane waves. The radius of curvature of the wave front is
large compared to the wave length.

These features may be derived from the radial component of the (linearized) mo-
mentum conservation law:

ρ0
∂v′

∂t
= −∂p′

∂r
(6.3a)

and the linearized mass conservation law:

∂(ρ ′r2)

∂t
= −ρ0

∂(v′r2)

∂r
. (6.3b)

The mass in a volume shell 4πr2dr changes as a result of the difference between
4πr2v′ and 4π(r+dr)2v′(r+dr) in flux. We eliminate ρ ′ by using the constitutive
equation p′ = c2

0ρ
′, and eliminate v′ by subtracting the time derivative of r2 times

the momentum equation (6.3a) from the spatial derivative of the mass equation
(6.3b). This yields the wave equation (6.1).

The general, formal solution of (6.2) is:

rp′ = F
(

t − r

c0

)
+ G

(
t + r

c0

)
, (6.4)
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168 6 Spherical waves

combining an outgoing wave F and an incoming wave G. Far away there is no
incoming wave, so we define the “free field” as the region for which G = 0. This
result of a vanishing incoming wave in free space may also be formulated as a
boundary condition at r →∞ (2.21a,2.21b,2.23).

As already stated, the acoustic velocity v′ has a rather complex behaviour, in con-
trast with the 1-D situation. This behaviour is found by substitution of (6.4) into
the momentum conservation law (6.3a):

ρ0
∂v′

∂t
= 1

r2
F
(

t − r

c0

)
+ 1

c0r
F ′

(
t − r

c0

)
. (6.5)

We now observe that the first term of (6.5) corresponds, for r/c0 much smaller
than the typical inherent time scale, to an incompressible flow behaviour (r2v′ =
constant) while the second term corresponds to wave-like phenomena. Only the
second term does contribute to the acoustic energy flux 〈I 〉 = 〈p′v′〉. This may be
verified by substitution of a harmonic solution into (6.5):

p′ = p̂ eiωt = A

4πr
eiωt−ikr (6.6)

we find

v̂ = p̂

iωρ0r
+ p̂

ρ0c0
= p̂

ρ0c0

(
− i

kr
+ 1

)
. (6.7)

The first term in v̂ is 1
2π out of phase with p̂ and therefore does not contribute to

〈I 〉 = 〈p′v′〉. Hence:

〈p′v′〉 = 1
4(v̂ p̂∗ + v̂∗ p̂) = p̂ p̂∗

2ρ0c0
. (6.8)

A very systematic discussion of this fundamental solution is given by Lighthill
[111].

Using (6.5) we can now determine the acoustic field generated by a pulsating
sphere of radius a(t). If (∂a/∂t)/c0 � 1, we can use linear acoustics, while the
movement of the sphere boundary yields the equation derived from (6.5):

ρ0
∂2a

∂t2
= 1

a2
F
(

t − a

c0

)
+ 1

c0a
F ′

(
t − a

c0

)
. (6.9)

For a compact sphere the first term is dominating (a(∂2a/∂t2)/c2
0 � 1). We find

exactly the result which we could anticipate from (2.59), the second derivative to
time of the volume of the sphere is the source of sound.
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A steady expansion of the sphere (∂a/∂t = constant) does not (in this approxi-
mation) generate sound. The second term of (6.9) is dominating for large sphere
radii (a(∂2a/∂t2)/c2

0 
 1). In such a case the action of the wall movement is that
of a piston which generates plane waves. For harmonic oscillations of the sphere
(a = a0 + â eiωt), the amplitude A of the radiated field is found from (6.6) by
substitution of v̂ = iωâ in (6.7) at r = a0.

p̂(a0) = A

4πa0
e−ika0 = − ω2ρ0â

1+ ika0
.

Hence

p̂(r) = − ω2ρ0âa0

(1+ ika0)2
e−ik(r−a0) . (6.10)

We can also determine the acoustic impedance Z

Z(ω) = p̂(a0)

v̂(a0)
= p̂(a0)

iωâ
(6.11)

Using (6.7) we find:

Z

ρ0c0
= ika0

1+ ika0
= ika0 + (ka0)

2

1+ (ka0)2
. (6.12)

We see that the real part of the radiation impedance of a compact sphere (ka0 � 1)
is very small:

Re
( Z

ρ0c0

)
� (ka0)

2 (6.13)

Hence (see (3.17)) a compact vibrating object in free space will be a very ineffec-
tive source of sound. This effect becomes even more dramatic when we consider
the radiation of a compact vibrating object of constant volume. The most simple
example of this behaviour is a translating sphere of constant radius a0. This is what
we call a dipole radiation source, in contrast to the monopole source corresponding
to a compact pulsating sphere.

The solution of the problem is easily obtained since we can generate from the
spherically symmetric solution (6.4) non-spherically symmetric solutions by taking
a spatial derivative (see equation 2.22b). If ϕ′ is a (spherically symmetric) solution
of the wave equation:

1

c2
0

∂2ϕ′

∂t2
−∇2ϕ′ = 0 (6.14)
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then any derivative of ϕ′, such as (∂ϕ′/∂xi ) or (∂ϕ′/∂t), is also a solution:

1

c2
0

∂2

∂t2

(∂ϕ′
∂xi

)
−∇2

(∂ϕ′
∂xi

)
= 0, (6.15)

in particular, any derivative of Eq. (6.6) is a solution. So if we try to find the field of
a translating sphere with velocity v0 (in x-direction), where at its surface the radial
flow velocity is given by:

v′(a0, ϑ) = v0 · r
a0

∣∣∣|r |=a0

= v0 cosϑ. (6.16)

we can use the derivative in the x-direction. For a harmonic oscillation v0 = v̂0 eiωt

with (v̂0/ωa0)� 1 the pressure field p′ is given by:

p̂ = A
∂

∂x

(e−ikr

r

)
= A cos ϑ

∂

∂r

(e−ikr

r

)
(6.17)

because ∂ r
∂x = cos ϑ . This pressure is related to the acoustic velocity v′ by the

momentum conservation law (6.3a):

iωρ0v̂ = −A cos ϑ
∂2

∂r2

(e−ikr

r

)
. (6.18)

Using the boundary condition (6.16) for r = a0 we can now calculate the amplitude
A for given v̂0:

iωv̂0 = −A
2 + 2ika0 − (ka0)

2

a3
0

e−ika0 (6.19)

so that the pressure field (6.17) can be written as:

p̂ = −iωρ0v̂0a3
0 cos ϑ

2+ 2ika0 − (ka0)
2

∂

∂r

(e−ik(r−a0)

r

)
. (6.20)

In the limit of (ka0)� 1 we see that:

p̂ � − 1
2(ka0)

2ρ0c0v̂0
a0 cosϑ

r

(
1− i

kr

)
e−ikr . (6.21)

Again we observe a near field behaviour with a pressure decreasing as r−2 and
for which p̂ is 1

2π out of phase with v̂0. This pressure field simply corresponds to
the inertia of the incompressible flow induced by the movement of the fluid from
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the front towards the back of the moving sphere. From (6.21) for r = a0 with
(ka0)� 1 we see that:

p̂(a0) � 1
4ρ0c0v̂0 cosϑ

(
2ika0 + i(ka0)

3 + (ka0)
4) . (6.22)

Hence, as the drag on the sphere, which is in phase with v̂0, scales as a2
0 Re[ p̂(a0)],

we see that the acoustic power generated by the sphere scales as ρ0c0v̂
2
0a2

0(ka0)
4.

This is a factor (ka0)
2 weaker than the already weak radiation power of a compact

pulsating sphere. So we now understand the need of a body in string instruments
or of a sound board in a piano. While the string is a compact oscillating cylinder
(row of oscillating spheres), which does not produce any significant sound directly,
it induces vibrations of a plate which has dimensions comparable with the acoustic
wave length and hence is radiating with an acoustic impedance ρ0c0 which is a
factor (ka0)

4 more efficient than direct radiation by the string.

Note. In order to provide a stable sound one should avoid in string instruments
elastic resonances of the body which are close to that of the string. If this is not the
case the two oscillators start a complex interaction, which is called for a violin a
“wolf tone”, because it has a chaotic behaviour [117].

Having discussed aspects of bubble acoustics in a pipe in section 4.4.5, we will
now consider some specific free field effects. Consider the oscillation of a compact
air bubble in water as a response to an incident plane wave pin = p̂in eiωt−ikx in
free space (deep under water). We can locally assume the pressure pb in the bubble
to be uniform and we assume a spherical oscillation of the bubble of equilibrium
radius a0:

a = a0 + â eiωt . (6.23)

The pressure in the bubble is given by:

p′b = p′in + p′r (a0) (6.24)

where p′r (a0) is the acoustic pressure due to the spherical waves generated by the
bubble oscillation. We have neglected surface tension. Furthermore, we assume an
ideal gas behaviour in the bubble:

p′b
p0
= −3γ

a′

a0
(6.25)

where γ = 1 for isothermal compression and γ = CP/CV for isentropic compres-
sion. p̂r (a) is related to â by the impedance condition:

p̂r (a) = iωâZ (6.26)
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and Z(ω) is given by equation (6.12). Hence combining (6.24) with (6.25) and
(6.26) we find:

− 3γ p0

a0
â = p̂in + iωâZ (6.27)

or:

p̂r (a0) = iωâZ = − p̂in

1− i
3γ p0

ωa0 Z

(6.28)

and

p̂r = p̂r (a0)
a0

r
e−ik(r−a0) . (6.29)

Using (6.12) we can write (6.28) as:

p̂r (a0) = − p̂in

1−
(ω0

ω

)2(
1+ ika0

) (6.30)

where ω0 is the Minnaert frequency defined by:

ω2
0 =

3γ p0

ρ0a2
0

. (6.31)

It is interesting to note that at resonance (ω = ω0) under typical conditions a bubble
is compact because:

(k0a0)
2 =

(ω0a0

c0

)2 = 3γ p0

ρ0c2
0

(6.32)

is small as long as p0 � ρ0c2
0.

For water ρ0c2
0 = 2 × 104 bar, hence up to p0 = 100 bar one can still assume

bubble oscillations at resonance to be compact. Equation (6.30) has many interest-
ing further applications [42, 103]. For example, sonar detection of fishes by using
a sweeping incident sound frequency yields information about the size of fishes
because the resonance frequency ω0 of the swim bladder yields information on the
size a0 of the fish. Furthermore, at resonance sound is scattered quite efficiently:

p̂r = −i
p̂in

k0r
e−ik(r−a0) . (6.33)

Hence the fish scatters sound with an effective cross section of the order of the
acoustic wave length at ω0 (an effective increase of the cross section by a factor
(k0a0)

−1). As we know a0 from ω0 the intensity of the scattered field yields infor-
mation on the amount of fish. Another fascinating effect of bubble resonance is the
very specific sound of rain impact on water [163].
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6.3 Multipole expansion and far field approximation

The free field Green’s function G0 defined by equation (3.1)

∂2G0

∂t2
− c2

0

∑ ∂2G0

∂x2
i

= δ(x − y)δ(t − τ) (3.1)

and the Sommerfeld radiation condition (2.23), may be found in Appendix E, but
can be derived as follows. We start with considering the Fourier transform Ĝ0 of
G0, with

G0 =
∫ ∞
−∞

Ĝ0 eiωt dω

and satisfying

∑ ∂2Ĝ0

∂x2
i

+ k2Ĝ0 = − 1

2πc2
0

δ(x − y) e−iωτ , (6.34)

where k = ω/c0. From symmetry arguments, Ĝ0 can only be a function of distance
r = |x − y|, so the solution of (6.34) has the form (see equation (6.6))

Ĝ0 = A

4πr
e−ikr (6.35)

where A is to be determined. Integration of (6.34) over a small sphere Bε around
y, given by, say, r = ε, yields by application of Gauss’ theorem∫∫∫

Bε

∑ ∂2Ĝ0

∂x2
i

+ k2Ĝ0 dx =
∫∫∫
Bε

− 1

2πc2
0

δ(x − y) e−iωτ dx =

∫∫
∂Bε

∑ ∂Ĝ0

∂xi
ni dσ +

∫∫∫
Bε

k2Ĝ0 dx =

4πε2 ∂Ĝ0

∂r
+ O(ε2) = −A + O(ε) = − 1

2πc2
0

e−iωτ

where ni denotes the outward normal of Bε, and we used the fact that ε is small. If
we let ε→ 0 we find that A = (2πc2

0)
−1 e−iωτ . So we have:

Ĝ0 = e−iωτ−ikr

8π2c2
0r
= e−iω(τ+r/c0)

8π2c2
0r

(6.36)
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(note the factor −1/2π differenc with the Green’s function of a regular Helmholtz
equation) and, using equation (C.34),

G0 = δ(t − τ − r/c0)

4πrc2
0

. (6.37)

In order to derive the general multipole expansion we will first consider the field at
a single frequency. By using the free-field Green’s function (Appendix E) we find
the acoustic field for a given time-harmonic source distribution q̂(x) eiωt in a finite
volume V to be given by

ρ̂ ′ = p̂′

c2
0

=
∫∫∫

V

q̂(y)Ĝ0(x|y) d y =
∫∫∫

V

q̂(y)
e−ikr

4πc2
0r

d y. (6.38)

Suppose the origin is chosen inside V . We are interested in the far field, i.e. |x| is
large, and a compact source, i.e. kL is small where L is the typical diameter of V .
This double limit can be taken in several ways. As we are interested in the radiation
properties of the source, which corresponds with k|x| ≥ O(1), we will keep kx
fixed. In that case the limit of small k is the same as small y, and we can expand in
a Taylor series around y = 0

r = (|x|2 − 2(x · y)+ |y|2)1/2 = |x|
(

1− x· y
|x|2 + |y|2

2|x|2 − (x· y)2
2|x|4 + . . .

)
= |x|

(
1− |y||x| cos θ + 1

2
|y|2
|x|2 sin2 θ + . . .

)
(where θ is the angle between x and y) and

e−ikr

r
= e−ik|x|

|x|
(

1+ (
1+ ik|x|) 1

|x|2
3∑

j=1

x j y j + . . .
)

=
∞∑

l,m,n=0

yl
1 ym

2 yn
3

l!m! n!
[
∂ l+m+n

∂yl
1∂ym

2 ∂yn
3

e−ikr

r

]
y1=y2=y3=0

. (6.39)

As r is a symmetric function in x and y, this is equivalent to

e−ikr

r
=

∞∑
l,m,n=0

(−1)l+m+n

l!m! n! yl
1 ym

2 yn
3
∂ l+m+n

∂xl
1∂xm

2 ∂xn
3

e−ik|x|

|x| . (6.40)

The acoustic field is then given by

ρ̂ ′ =
1

4πc2
0

∞∑
l,m,n=0

(−1)l+m+n

l!m! n!
∫∫∫

V

yl
1ym

2 yn
3 q̂(y) d y

∂ l+m+n

∂xl
1∂xm

2 ∂xn
3

e−ik|x|

|x| . (6.41)
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As each term in the expansion is by itself a solution of the reduced wave equation,
this series yields a representation in which the source is replaced by a sum of
elementary sources (monopole, dipoles, quadrupoles, in other words, multipoles)
placed at the origin ( y = 0). Expression (6.41) is the multipole expansion of a
field from a finite source in Fourier domain. From this result we can obtain the
corresponding expansion in time domain as follows.

With Green’s function (6.37) we have the acoustic field from a source q(x, t)

ρ ′ =
∫ ∞
−∞

∫∫∫
V

q(y, τ )
δ(t − τ − r/c0)

4πrc2
0

d ydτ

=
∫∫∫

V

q(y, t − r/c0)

4πrc2
0

d y (6.42)

If the dominating frequencies in the spectrum of q(x, t) are low, such that ωL/c0

is small, we obtain by Fourier synthesis of (6.41) the multipole expansion in time
domain (see Goldstein [60])

ρ ′ = 1

4πc2
0

∞∑
l,m,n=0

(−1)l+m+n

l!m! n! . . .

∂ l+m+n

∂xl
1∂xm

2 ∂xn
3

 1

|x|
∫∫∫

V

yl
1ym

2 yn
3 q(y, t − |x|/c0) d y


=

∞∑
l,m,n=0

∂ l+m+n

∂xl
1∂xm

2 ∂xn
3

[
(−1)l+m+n

4π |x|c2
0

µlmn(t − |x|/c0)

]
(6.43)

where µ jmn(t) is defined by:

µlmn(t) =
∫∫∫

V

yl
1ym

2 yn
3

l!m! n! q(y, t) d y. (6.44)

The (lmn)-th term of the expansion (6.43) is called a multipole of order 2l+m+n .
Since each term is a function of |x| only, the partial derivatives to xi can be rewrit-
ten into expressions containing derivatives to |x|. In general, these expressions are
rather complicated, so we will not try to give the general formulas here. It is, how-
ever, instructive to consider the lowest orders in more detail as follows.
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The first term corresponds to the monopole:

ρ ′0 =
µ0(t − |x|/c0)

4πc2
0|x|

(6.45)

where we wrote for brevity µ0 = µ000. We have concentrated the source at the
origin and

µ0(t) =
∫∫∫

V

q(y, t) d y. (6.46)

The next term is the dipole term:

ρ ′1 = −
3∑

i=1

xi

|x|
∂

∂|x|
(µ1,i(t − |x|/c0)

4πc2
0|x|

)
(6.47)

where we wrote for brevity: µ1,1 = µ100, µ1,2 = µ010 and µ1,3 = µ001. If q is a
point source this dipole term is easily visualized as shown in figure 6.1.

.....

Figure 6.1 First step in the multipole expansion of a point source.

The dipole of strength µ1,i , which we should place at the origin ( y = 0):

µ1,i(t) =
∫∫∫

V

yiq(y, t) d y, (6.48)

is obtained by bringing the (point) source q towards the origin while increasing its
strength and that of the opposite (point) source −q at the origin in such a way that
we keep |y|q constant.

A dipole field is not isotropic because in a direction normal to the vector y the two
sources forming the dipole just compensate each other, while in the other directions
due to a difference in emission time there is a net acoustic field. This effect of the
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ϑ

y

x

x − y

y·x
|x|

Figure 6.2 Retarded or emission time difference is ( y·x/|x|)/c0 = (|y| cosϑ)/c0.

difference in retarded time (figure 6.2) between the sources in the dipole simplifies
in the far field as follows. Writing (6.47) as:

ρ ′1 = −
3∑

i=1

xi

|x|
∫∫∫

V

yi

4πc2
0

{
− 1

c0|x|
∂

∂t
q(y, t − |x|/c0)

− 1

|x|2 q(y, t − |x|/c0)

}
d y (6.49)

we see that for large distances (k|x| 
 1) the acoustic field due to the dipole
contribution is given by:

ρ ′1 �
3∑

i=1

xi

4πc3
0|x|2

∂

∂t

∫∫∫
V

yiq(y, t − |x|/c0) d y

=
3∑

i=1

xi

4πc3
0|x|2

[ d

dte
µ1,i(te)

]
te=t−|x|/c0

(6.50)

where µ1,i(t) is the dipole strength. If the source has a particular form, for example
it represents a force density fi like in (2.63):

q(y, τ ) = −
3∑

i=1

∂ fi

∂yi
, (6.51)
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we observe that the surface integral of the monopole term vanishes because we
assumed a finite source region, outside which f = 0. We see that the force field fi

is equivalent to an acoustic dipole of strength:

µ1,i =
∫∫∫

V

fi d y (6.52)

which corresponds simply to the total force F on V . In a similar way it is clear that
the Lighthill stress tensor Tij induces a quadrupole field because from (2.63) we
have:

q =
3∑

i, j=1

∂2Tij

∂yi∂y j
.

By partial integration it follows that the strength of the quadrupole is:

µ2,i j =
∫∫∫

V

Tij dx, (6.53)

where we wrote for brevity µ2,11 = µ200, µ2,12 = µ110, µ2,13 = µ101, etc. . In
the far field approximation, where the retarded (or emission) time effect can be
estimated by replacing (∂/∂|x|) by −c−1

0 (∂/∂t), we find for a quadrupole field

ρ ′ �
3∑

i, j=1

xi x j

4πc2
0|x|3

1

c2
0

[ d2

dt2
e

µ2,i j (te)
]

te=t−|x|/c0

. (6.54)

6.4 Method of images and influence of walls on radiation

Using G0 we can build the Green’s function in presence of walls by using the
method of images as discussed in section 4.6. The method of images is simple for
a plane rigid wall and for a free surface. In the first case the boundary condition
v′ ·n = 0 is obtained by placing an image of equal strength q at the image point of
the source position (figure 6.3). For a free surface, defined by the condition p′ = 0
(air/water interface seen from the water side), we place an opposite source −q at
the image point.

For a rigid wall at x1 = 0 we simply have the Green’s function:

G(x, t|y, τ ) = δ(t − τ − r/c0)

4πc2
0r

+ δ(t − τ − r∗/c0)

4πc2
0r∗

(6.55)
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+ ++

+ +
−

b) free surface

a) hard wall

p’ = 0

u’.n = 0

Figure 6.3 Images of sources in plane surfaces

where

r =
√
(x1 − y1)2 + (x2 − y2)2 + (x3 − y3)2,

r∗ =
√
(x1 + y1)

2 + (x2 − y2)
2 + (x3 − y3)

2.

We easily see from figure 6.3 that a source placed close to a rigid wall will radiate
as a source of double strength (|y1|k � 1) while a source close to a free surface
will radiate as a dipole.

When more than a wall is present the method of images can be used by successive
reflections against the walls. This is illustrated in figure 6.4. When a harmonic
source is placed half way between two rigid walls separated by a distance h (at
y = 1

2 h) the radiated field is equivalent to that of an infinite array of sources placed
at a distance h from each other (figure 6.4b). We immediately see from this that
there are directions ϑ in which the sources in the array interfere positively. The
interference condition is simply:

h sinϑ = nλ; n = 0, 1, 2, ... (6.56)

where λ is the acoustic wave length. For this symmetrically placed source only
symmetric modes can occur. When the source is placed at one of the walls (y = 0
or h) we find the interference condition given by

h sinϑ = 1
2nλ; n = 0, 1, 2, ... (6.57)
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nλ
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θ

θb) duct

a) corner

h
θ

Figure 6.4 Application of the method of images.

since the source and its images form an array of sources placed at a distance 2h
from each other.

The condition n = 0 corresponds to plane waves in a tube. The conditions n > 0
correspond to higher order mode propagation in the “duct” formed by the two
walls. This can also be seen for a duct of square cross section for which the image
source array becomes two-dimensional. We clearly see from this construction that
higher order modes will not propagate at low frequencies because when (h < 1

2λ),
there are no other solutions than ϑ = 0 to equation (6.57). This justifies the plane
wave approximation used in chapter 4 (see further chapter 7). We see also that at
low frequencies (for plane waves) the radial position of a source does not affect the
radiation efficiency. For a higher mode, on the other hand, the sound field is not
uniform in the duct cross section and the source radiation impedance is position
dependent. The first non-planar mode has a pressure node on the duct axis and
cannot be excited by a volume source placed on the axis (

∮
p′Q dt = 0). This

explains the difference between condition (6.56) and (6.57) for the excitation of a
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higher mode. A more comprehensive treatment of pipe modes is given in chapter
7.

R r∗

r

Figure 6.5 Image of a line source in a compact cylinder.

The method of images can also be used for a line source close to a compact cylinder
of radius R or a point source near a compact sphere of radius a [123]. For a line
source near a cylinder we should place an identical line source at the inverse point
r∗ defined by:

r∗ = r (R/|r|)2 (6.58)

and an opposite line source (i.e. a sink) at r = 0 on the cylinder axis (figure 6.5).
For a sphere we should place a source q∗ at r∗ defined by:

q∗ = q a/|r| (6.59)

and

r∗ = r (a/|r|)2 (6.60)

while in order to keep the mass balance we place a line of uniformly spaced sinks
of total strength q∗ stretching from r∗ to the center of the sphere (r = 0) [123].

6.5 Lighthill’s theory of jet noise

Consider a free turbulent jet formed at the exit of a circular pipe of diameter D. The
mean flow velocity in the pipe is u0. We assume that u0 � c0 and that the entropy is
uniform (air jet in air with uniform temperature). The key idea of Lighthill was that
the sound produced by the turbulence was originated from a volume of order D3

and that the influence of the pipe walls on the sound radiation could be neglected.
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In such a case combining (2.63) with (3.13) and using the free space Green’s func-
tion G0 given by (6.37) we find:

ρ ′(x, t) =
t∫

−∞

∫∫∫
V

∂2Tij

∂yi∂y j
G0(x, t|y, τ ) d ydτ. (6.61)

Partial integration (twice) yields:

ρ ′(x, t) =
t∫

−∞

∫∫∫
V

∂2G0

∂yi∂y j
Ti j (y, τ ) d ydτ. (6.62)

Because G0 is only a function of r = |x − y| we have:

∂G0

∂yi
= ∂G0

∂r

∂r

∂yi
= −

(xi − yi

r

)∂G0

∂r
= −∂G0

∂xi
. (6.63)

Approaching the source towards the observation point has the same effect as ap-
proaching the observation point towards the source. Hence we can write (6.62)
as:

ρ ′(x, t) = ∂2

∂xi∂x j

t∫
−∞

∫∫∫
V

G0(x, t|y, τ )Tij (y, τ ) d ydτ. (6.64)

The integration variable yi does not interfere with xi . Using now (6.37) we can
carry out the time integration:

ρ ′(x, t) = ∂2

∂xi∂x j

∫∫∫
V

Tij (y, t − r/c0)

4πc2
0r

d y. (6.65)

In the far field the only length scale is the wave length, hence we have replaced the
problem of the estimate of a space derivative (∂/∂yi) at the source by the problem
of the estimate of the characteristic frequency of the produced sound. In the far
field approximation we have:

ρ ′(x, t) � xi x j

4πc2
0|x|2

∂2

c2
0∂t2

∫∫∫
V

Tij (y, t − |x|/c0)

|x| d y. (6.66)
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For high Reynolds number we can neglect the effect of viscosity (if it were not
small turbulence would not occur!). If we assume a homentropic compact flow we
have (2.66):

Tij � ρ0viv j . (6.67)

The first estimates of Lighthill for a circular1 free jet are:

– the characteristic time scale for large eddy’s in the flow is (D/u0).
– the Reynolds stress scales as ρu2

0.
– the relevant volume V is of order D3.

Hence we should replace (∂/∂t) by u0/D in (6.66) and we find:

ρ ′(x, t) ∼ 1

4πc4
0

(u0

D

)2ρ0u2
0 D3

|x| (6.68)

or in terms of intensity ρ ′2 and Mach number M0 = u0/c0:

ρ ′2 ∼
( ρ0 D

4π |x|
)2

M8
0 . (6.69)

This is the celebrated 8-th power law of Lighthill which ".. represents a triumph of
theory over experiment; before the publication of U 8, most reports of measured jet
noise data gave a U 4 variation, which was then quickly recognized, post U 8, as as-
sociated with noise sources within the engine itself, rather than with the jet exhaust
turbulent mixing downstream of the engine. In fact, variation of intensity with U 8

is now generally accepted as defining jet mixing noise .." (Crighton, l.c.); see fig-
ure 6.6. Equation (6.69) tells us that turbulence in free space is a very ineffective
source of sound. When a more detailed description of the flow is used to estimate
Tij one can also find the directivity pattern of the radiation field [60, 13, 169]. This
directivity pattern results from Doppler effects and refraction of the sound waves
by the shear layer surrounding the jet.

As the Mach number approaches unity the character of the sound production
changes drastically because the flow is not compact any more (D/λ ∼ M0) and
because at higher Mach numbers shock waves appear if the jet is not properly
expanded. These shocks generate noise by interaction with turbulence (random
vorticity) and vortices (coherent structures) [56].

Moreover, it is obvious that the generated power cannot grow indefinitely with a
power M8. There is a natural maximum corresponding to the kinetic energy flux in

1See Bjørnø [12] for planar jets.

RienstraHirschberg 19 July 2006 20:00



184 6 Spherical waves

300 650 1400 300014065

200

180

160

140

120

100

80

model curves

SP
L

 (
dB

)
jet engines

rockets

U 8

U 3

U [m/s]

Figure 6.6 Sound power generated by a jet.

the jet 1
2ρu3

0 · π4 D2. This natural upper bound prevails above M > 1 and the sound
intensity scales above M > 1 as M3

0 . The typical fraction of flow power transferred
to the acoustic field at high Mach number by a properly expanded supersonic jet
is 10−4 (M > 1). Following Goldstein [60] the acoustic power W generated by a
subsonic homentropic jet is given by

W
1
8ρ0u3

0πD2
= 8× 10−5 M5

0 . (6.70)

Hence at Mach M0 = 0.1 we can estimate that only a fraction 10−9 of the hydro-
dynamic power is transferred to the acoustic field. This is the key of the problem
of calculating the acoustic field from a numerical calculation of the flow pattern
at low Mach numbers. In order to achieve this we have to calculate the flow field
within an accuracy which is far above the typical score (5%) of turbulence mod-
elling nowadays. However, the simple scaling law of Lighthill already tells us that
in order to reduce turbulence noise we should reduce the Mach number. A very
useful result as we will see from exercise k) below.

Lighthill’s analogy in the form of equation (6.66) is often used to obtain acoustical
information from numerical calculations of turbulent flow. Such calculations can
be based on an incompressible model which by itself does not include any acoustic
component.

When the jet has a different entropy than the environment (hot jet or different fluid)
the sound production at low Mach numbers is dominated by either Morfey’s dipole

RienstraHirschberg 19 July 2006 20:00



6.6 Sound radiation by compact bodies in free space 185

source term (∂/∂yi)((c2 − c2
0)/c

2
0)(∂p′/∂yi) or by a volume source term due to

diffusion and heat transfer (entropy fluctuations). When a hot gas with constant
caloric properties is mixed with the cold environment the monopole sound source
is negligible compared to the dipole due to convective effects ([127]). One finds
then a sound power which at low Mach numbers scales at M6

0 . Upon increasing the
Mach number the turbulent Reynolds stress can become dominant and a transition
to the cold jet behaviour (M8

0 ) can be observed in some cases.

In hot jets with combustion, vapour condensation or strongly temperature depen-
dent caloric gas properties the monopole source dominates ([34]), and a typical M4

0

scaling law is found for ρ ′2.

The influence of the viscosity on the sound generation by a free jet has been studied
by Morfey [128], Obermeier [147] and Iafrati [80].

6.6 Sound radiation by compact bodies in free space

6.6.1 Introduction

In principle, when a compact body is present in a flow we have two possible meth-
ods to calculate the sound radiation when using Lighthill’s theory (section 2.6). In
the first case we use a tailored Green’s function which is often easy to calculate in
the far field approximation by using the reciprocity principle (3.4). In the second
case we can use the free field Green’s function G0 which implies that we should
take surface contributions in equation (3.12) into account. This second method is
called Curle’s method [60, 13]. The advantage of the method of Curle is that we
still can use the symmetry properties of G0 like:

∂G0

∂yi
= −∂G0

∂xi
. (6.71)

Furthermore, we will see that the surface terms have for compact rigid bodies quite
simple physical meaning. We will see that the pulsation of the volume of the body
is a volume source while the force on the body is an aero-acoustic dipole. In this
way we can in fact say that if we know the aerodynamic (lift and drag) force on
a small propeller we can represent the system by the reaction force acting on the
fluid as an aero-acoustic source, ignoring further the presence of the body in the
calculation of the radiation.
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6.6.2 Tailored Green’s function

The method of tailored Green’s function has of course the nice feature of a simple
integral equation (3.13). We will, however, in general not have a simple symmetry
relation allowing to move the space derivative outside the integral. The construc-
tion of the tailored Green’s function in the far field approximation is in fact equiv-
alent to considering the acoustic response of the body to a plane incident wave. In
applications like the effect of a bubble on turbulence noise we already did this for
a bubble in a duct (section 4.7).

The method of images discussed in section 6.4 is an efficient procedure to construct
a Green’s function for simple geometries. This is obvious when we consider a plane
rigid wall. Using the reciprocity principle we send a plane wave p′in and look at the
resulting acoustic field in the source point y. The acoustic field in y is built out of
the incident wave p′in and the wave reflected at the surface p′r . In the method of
images we simply assume that p′r comes from an image source, as shown in figure
6.7.

a) b)

x x

y y

p′in

p′r
source

image

Figure 6.7 a) Acoustic response to a plane wave.
b) Sound emitted by the source in the same observers direction.

When calculating the Green’s function we should take in free space as amplitude
of the incident wave p′in the amplitude calculated from (6.37). For compact bodies
or sources close to a surface we can neglect the variation in travel time of p′in over
the source region and we find:

p′in =
δ(−t + τ − |x|/c0)

4π |x|c2
0

(6.72)

where the signs of t and τ have been changed because of reciprocity relation (3.4).
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When considering harmonic waves we have from (6.36) that:

p̂in = e−ikr

8π2c2
0r

(6.73)

where in the far field approximation r � |x|. The Green’s function is found by
adding the system response p′r (or p̂r ) to the incident wave p′in. Once a tailored
Green’s function has been obtained we find by using (3.13):

ρ ′(x, t) =
t∫

−∞

∫∫∫
V

q(y, τ )G(x, t|y, τ ) d ydτ. (3.13)

By partial integration and assuming that the sources are the volume sources
∂2Tij /∂xi∂x j as defined in (2.63) which are limited to a small region of space
we find:

ρ ′(x, t) =
t∫

−∞

∫∫∫
V

∂2G

∂yi∂y j
Ti j d ydτ. (6.74)

Comparison of the space derivative of the tailored Green’s function with that of
the free space Green’s function G0 yields an amplification factor A of the radiated
field:

A =
∣∣∣ ∂2G

∂yi∂y j

∣∣∣/∣∣∣ 1

c2
0

∂2G0

∂t2

∣∣∣ (6.75)

where we made use of the approximation ∂2G0/∂xi∂x j � (∂2G0/∂t2)/c2
0 in the

far field, and assumed that the flow is not influenced by the foreign body (Tij =
constant).

Using this procedure one can show [13, 42, 60] that turbulence near the edge of
a semi-infinite plane produces a sound field for which ρ ′2 scales as M5

0 which
implies for M0 � 1 a dramatic increase (by a factor M−3

0 ) compared to free field
conditions. This contribution to trailing edge noise is very important in aircraft
noise and wind turbine noise.

6.6.3 Curle’s method

When we place a cylinder of diameter d in a turbulent jet with a main flow velocity
u0, the cylinder will not only enhance the radiation by the already present turbu-
lence. A cylinder will affect the flow. Behind the cylinder at high Reynolds num-
bers we have an unstable wake. Above a Reynolds number of Re = u0d/ν = 40
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the wake structure is dominated by periodic vortex shedding if 40 ≤ Re ≤ 3× 105

and for Re ≥ 3.5 × 106 [13, 15, 65]. The frequency fV of the vortex shedding is
roughly given by:

fV d

u0
= 0.2. (6.76)

Hence the sound produced by vortex shedding has in contrast with turbulence a
well-defined frequency. The periodic shedding of vorticity causes an oscillating
lift force on the cylinder, with an amplitude L per unit length given by

L = −ρ0�u0, (6.77)

where � is the circulation of the flow around the cylinder. By definition the lift
force is perpendicular to the mean flow direction (u0). In dimensionless form the
lift is expressed as a lift coefficient CL :

CL = L
1
2ρu2

0d
. (6.78)

The lift coefficient of a cylinder is in a laminar flow of order unity. However, CL

is strongly affected by small disturbances and the lift force is not always coherent
along the cylinder. This results in a CL for a rigid stationary cylinder ranging

from (CL)rms � 0.1 for Re ≤ 2× 105

to (CL)rms � 0.3 for Re ≥ 5× 105,

while (CL)peak � 1.0 for Re ≤ 2× 105

and (CL)peak � (CL)rms for Re ≥ 2× 105.

The drag force has a fluctuating component corresponding to (CD)rms � 0.03.
Elastic suspension of a cylinder enhance considerably the coherence of vortex
shedding resulting into a typical value of CL � 1. The calculation of the sound
production by vortex shedding when using a tailored Green’s function is possi-
ble but is not the easiest procedure. We will now see that Curle’s method relates
directly the data on the lift and drag to the sound production.

Consider a body which, for generality, is allowed to pulsate, and is enclosed by
a control surface S (figure 6.8). We want to calculate the field ρ ′ in the fluid and
hence we define the control volume V at the fluid side of S. The outer normal
n on S is directed towards the body enclosed by S. (Note that we use here the
convention opposite from Dowling et al. [42]!) Using equation (3.12) combined
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with Lighthill’s analogy (2.63), ignoring external mass sources and force fields
and taking t0 = −∞ yields

ρ ′ =
t∫

−∞

∫∫∫
V

∂2Tij

∂yi∂y j
G0(x, t|y, τ ) d ydτ

− c2
0

t∫
−∞

∫∫
S

[
ρ ′
∂G0

∂yi
− G0

∂ρ ′

∂yi

]
ni dσdτ. (6.79)

Applying partial integration twice yields:

ρ ′ =
t∫

−∞

∫∫∫
V

Tij
∂2G0

∂yi∂y j
d ydτ +

∫ t

−∞

∫∫
S

{[
G0
∂Tij

∂yi
n j − Tij

∂G0

∂y j
ni

]

+ c2
0

[
G0
∂ρ ′

∂yi
ni − ρ ′ ∂G0

∂yi
ni

]}
dσdτ. (6.80)

Using the definition (2.64) of Tij and its symmetry (Tij = Tji):

Tij = Pij + ρviv j − c2
0ρ
′δi j (2.64)

we find:

ρ ′ =
t∫

−∞

∫∫∫
V

Tij
∂2G0

∂yi∂y j
d ydτ +

t∫
−∞

∫∫
S

G0

(∂Pij + ρviv j

∂y j

)
ni dσdτ

−
t∫

−∞

∫∫
S

(
Pij + ρviv j

)∂G0

∂y j
ni dσdτ. (6.81)

Using the momentum conservation law (1.2) in the absence of external forces ( fi =
0):

∂

∂τ

(
ρvi

)+ ∂

∂y j

(
Pij + ρviv j

) = 0
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and the symmetry of G0 (6.70), we obtain:

ρ ′ =
t∫

−∞

∫∫∫
V

Tij
∂2G0

∂xi∂x j
d ydτ −

t∫
−∞

∫∫
S

G0
∂(ρvi)

∂τ
ni dσdτ

+
t∫

−∞

∫∫
S

(
Pij + ρviv j

)∂G0

∂x j
ni dσdτ. (6.82)

The spatial partial derivatives (∂/∂x j) do not refer to y and can be taken out-
side the integral. In the far field they can be approximated by the time derivatives
−(x j/|x|)c−1

0 (∂/∂t). Furthermore, in the second integral in (6.82) we can make
use of the general symmetry in the time coordinate of any Green’s function:

∂G

∂t
= −∂G

∂τ
. (6.83)

(The effect of listening later is the same as shooting earlier!) In order to use (6.83)
we therefore first move the time derivative (∂/∂τ) from ρvi towards G0 by partial
integration. We finally obtain:

ρ ′ � xi x j

|x|2c2
0

∂2

∂t2

∫ t

−∞

∫∫∫
V

Tij G0 d ydτ − ∂

∂t

∫ t

−∞

∫∫
S

ρvi G0ni dσdτ

− x j

c0|x|
∂

∂t

t∫
−∞

∫∫
S

(
Pij + ρviv j

)
G0ni dσdτ. (6.84)

Using the δ-function in G0 of equation (6.37), we can carry out the time integrals
and we have Curle’s theorem

ρ ′ � xi x j

4π |x|2c4
0

∂2

∂t2

∫∫∫
V

[Tij

r

]
t=te

d y − 1

4πc2
0

∂

∂t

∫∫
S

[ρvi ni

r

]
t=te

dσ

− x j

4π |x|c3
0

∂

∂t

∫∫
S

[(
Pij + ρviv j

)ni

r

]
t=te

dσ (6.85)

where r = |x − y| and the retarded time te is

te = t − r/c0 � t − |x|/c0. (6.86)

The first term in (6.85) is simply the turbulence noise as it would occur in absence
of a foreign body (except for the fact that the control volume V excludes the body).

RienstraHirschberg 19 July 2006 20:00



6.7 Sound radiation from an open pipe termination 191

S

n

V

Figure 6.8 Control volume V and surface S
and outer normal n.

The second term is the result of move-
ment of the body. For a rigid body at a
fixed position we have vi ni = v ·n = 0.
This term is important when the body is
pulsating. For a compact body we have
then a simple volume source term. This
term can be used to describe the flow
out of a pipe. Note that ρ is the fluid
density just outside the control surface
so that we consider the displacement of
fluid around the body, rather than a mass injection.

The last integral in (6.85) is the momentum flux through the surface and the pres-
sure and viscous forces. For a fixed rigid body ρviv j = 0 because v = 0 at a
surface (“no slip” condition in viscous flow). In the case of a compact, fixed, and
rigid body, we can neglect the emission time variation along the body, and we have
r � |x|. The instantaneous force Fi of the fluid on the body (lift and drag) is then

Fi(te) �
∫∫
S

[
Pij

]
t=te

n j dσ. (6.87)

Hence, for a fixed rigid compact body we have:

ρ ′(x, t) = xi x j

4π |x|3c4
0

∂2

∂t2

∫∫∫
V

Tij (y, t − |x|/c0) d y

− x j

4π |x|2c3
0

∂

∂t
Fj (t − |x|/c0). (6.88)

6.7 Sound radiation from an open pipe termination

Horns and tubes are used as an impedance matching between a volume source and
free space. We use such a device to speak! Without vocal tract the volume source
due to the vocal fold oscillation would be a very inefficient source of sound. We
consider now the radiation of sound from such a tube.

We know the behaviour of sound waves in a duct at low frequencies (chapter 4).
We know how sound propagates from a point source in free space. We are now
able to find the radiation behaviour of a pipe end by matching the two solutions
in a suitable way. If the frequency is low enough compared to the pipe diameter,
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the flow near the pipe end is incompressible in a region large enough to allow the
pipe opening to be considered as a monopole sound source. The strength of this
monopole is determined by the pipe end velocity v′. For convenience, we assume
that the pipe end is acoustically described for the field inside the pipe by an im-
pedance Z p. The pressure p′ in the pipe consists of a right-running incident wave
and a left-running reflected wave:

p′ = p+ + p−. (6.89)

The acoustic velocity in the pipe is related to the acoustic pressure in the pipe by:

v′ = v̂ eiωt = p+ − p−

ρ0c0
. (6.90)

Assuming a redistribution of the acoustic mass flow v′S through the pipe end with
cross section S into the surface of a compact sphere of radius r and surface 4πr2

(conservation of mass), we can calculate the radiated power for a harmonic field
in- and outside the pipe, by using (6.13):

I S = 〈p′v′〉S = 1
2 v̂v̂

∗ Re(Z p)S

= 1
2

( S

4πr2
v̂
)( S

4πr2
v̂∗
)
(k2r2ρ0c0)(4πr2). (6.91)

From this conservation of energy relation we find for the real part of the radiation
impedance Z p of an unflanged pipe:

Re(Z p) = 1

4π
k2Sρ0c0 (6.92)

which is for a pipe of radius a:

Re(Z p) = 1
4(ka)2ρ0c0. (6.93)

This result is the low frequency limit of the well-known theory of Levine and
Schwinger [106].

The imaginary part Im(Z p) takes into account the inertia of the air flow in the
compact region just outside the pipe. It appears that Im(Z p) is equal to kδ, where
δ is the so-called “end correction”. This seen as follows. Just outside the pipe end,
in the near field of the monopole, the pressure is a factor ρ0c0kr lower than the
acoustic velocity, which is much smaller than the ρ0c0 of inside the pipe (see
equation 6.7). Therefore, the outside field forces the inside pressure to vanish at
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6.7 Sound radiation from an open pipe termination 193

about the pipe end. Although the exact position of this fictitious point x = δ (the
“end correction”), where the wave in the pipe is assumed to satisfy the condition
p = 0, depends on geometrical details, it is a property of the pipe end and there-
fore δ = O(a). This implies that the end correction amounts to leading order in
ka to nothing but a phase shift of the reflected wave and so to a purely imaginary
impedance Z p. Up to order (ka)2 this impedance can now be expressed as:

Z p = (ikδ + 1
4(ka)2)ρ0c0 (6.94)

where it appears that2:

0.61a ≤ δ ≤ 0.85a (6.95)

for circular pipes [156]. The lower limit corresponds to an unflanged pipe while
the upper limit corresponds to a pipe end with an infinite baffle (flanged). See also
section 7.9.

Exercises

a) Note that the acoustic field generated by a compact translating sphere is a dipole
(equation 6.21) we find the typical cosϑ = xi yi/|x|| y| directivity. What are the
source and the sink forming the dipole? (Explain qualitatively.)

b) A vortex ring with time dependent vorticity is a dipole. (Explain qualitatively.)

c) An electrical dipole radiates perpendicularly to the axis of the dipole. What is the
reason for this difference in directivity of electrical and acoustic dipoles?

d) Why is the boundary condition p′ = 0 reasonable for acoustic waves reflecting at a
water/air interface (on the water side)?

e) We have seen (section 6.2) that a translating sphere induces a dipole field. Moving
parts of a rigid machine also act as dipoles if they are compact. Explain why a body
translating in an oscillatory manner close to the floor produces more sound when it
moves horizontally than vertically.

f) The acoustic pressure p′ generated by a monopole close to a wall increases by
a factor 2 in comparison with free field conditions. Hence the radiated I intensity
increases by a factor 4. How much does the power generated by the source increase?

g) The cut-off frequency fc above which the first higher mode propagates in a duct
with square cross section appears to be given by 1

2λ = 1
2 c0 fc = h. figure 6.4

suggests that this would be c0 fc = h for a source placed in the middle of the duct.
Explain the difference.

2− 1
π

∫∞
0 log(2I1(x)K1(x))

dx
x2 = 0.612701035 . . . , 2

∫∞
0 J1(x)

dx
x2 = 8

3π = 0.848826363 . . .
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194 6 Spherical waves

h) In a water channel with open surface sound does not propagate below a certain cut-
off frequency fc. Explain this and calculate fc for a square channel cross section
h = 3 m.

h

h

i) Consider a sphere oscillating (translating periodically) in an infinite duct with hard
walls and square cross section. Discuss the radiation as function of the oscillation
frequency and the direction of oscillation (along the duct axis or normal to the axis).
Relate the dipole strength δQ to the amplitude of the acoustic waves for f < fc in
a pipe of cross sectional area S.

j) Explain by using the method of images why a line quadrupole placed near a cylin-
der, parallel to the axis of the cylinder (figure 6.9), will radiate as a line dipole. (This
explains that turbulence near such a cylinder will radiate quite effectively [118]!)

Figure 6.9 A line quadrupole near a cylinder.

k) Consider two jet engines developing the same thrust with diameters D1 and D2 =
2D1, respectively. Assuming a low Mach number estimate the ratio of the sound
power generated by both engines.

l) Which scaling rule do you expect for the Mach number dependence of the sound
produced by a hot steam in cold air?
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m) Which scaling rule do you expect for the Mach number dependence of the sound
produced by a bubbly liquid jet in water?

n) Typical entropy fluctuations due to friction at the pipe wall from which the jet is
leaving correspond to temperature fluctuations T ′/T0 � 0.2M2. At which Mach
number do you expect such effect to become a significant source of sound?

o) A subsonic jet with M � 1 is compact if we consider the sound produced by
turbulence. Why?

p) Estimate the amplification of turbulence noise due to the presence of a cylinder of
diameter d near a free jet of diameter D at a main speed u0 if we assume that the
cylinder does not affect the flow.

q) Same question for a small air bubble of diameter 2a near a free jet of diameter D
and speed u0. Assume a low frequency response of the bubble.

u0

ωR

veff

L

D

Figure 6.10 The forces on a fan blade (Exercise r)

r) Consider a small ventilator rotating at a radial frequency ω in a uniform flow u0.
The fan feels at a certain distance r from the axis of the ventilator an effective
wind velocity veff which is a combination of the axial velocity u0 and the tangential
velocity ωr (where we neglect the air rotation induced by the fan) (figure 6.10).
Assume that u0 = 0.1ωR. If we concentrate on the tip of the fan (r = R) we have
a lift force L, per unit length, which is normal to veff. The magnitude of L is given
by:

L = 1

2
ρv2

eff DCL

where D is the width of the profile of the blade. Typically CL is O(1) for a well-
designed ventilator. Consider first a ventilator with a single blade. Discuss the con-
tribution of the tangential and axial components of the lift for L on the noise. What
is the effect of having a second blade on the ventilator? (See figure 6.11.) A well-
designed ventilator has many blades. How does this affect sound production?
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D

R

ω ω

Figure 6.11 Single and dual bladed ventilator (Exercise r)

s) How does the presence of duct walls influence the low-frequency sound production
of an axial ventilator placed in the duct.

Figure 6.12 Propeller in pusher position (Exercise t)

t) Consider an airplane with a rotor placed just behind the wing (figure 6.12). Discuss
the sound production (frequency, directivity...).

u) Can we consider an aircraft propeller as a compact body?

v) What is the Mach number dependence of the sound produced by a small (compact)
body placed in a turbulent flow?

w) Estimate the low frequency impedance Z p of a flanged pipe termination.

vp(t)

L

2a

Figure 6.13 Piston in cylindrical pipe (Exercise x)

x) Assuming a low frequency, calculate the power radiated in free space by a piston
placed at the end of a circular pipe of radius a and length L (figure 6.13). What is
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the ratio between this power at resonance k0 L = (n + 1
2 )π , and the power which

would be radiated by the piston without a pipe.

vp(t)

L

S1 S2

Figure 6.14 Piston in conical pipe (Exercise y)

y) Consider a conical pipe driven by a piston of surface S1 and with an outlet surface S2
(figure 6.14). Determine the sound field inside the pipe. Hint. Use spherical waves
centred at the cone top!

z) A small transistor radio is not able to produce low frequencies (why?). We hear
low frequencies because our ear is artificially guessing these low frequencies when
we supply a collection of higher harmonics (figure 6.15). On the other hand, when
using a Walkman we are actually provided with real, low frequencies. Why is this
possible even though the loudspeaker is a miniature device?

f0 2 f0 3 f0 4 f0 f0 2 f0 3 f0 4 f0

Figure 6.15 We hear the missing fundamental! (Exercise z)

A) Calculate the friction and radiation losses in a clarinet. Assume a tube radius of 1
cm and a length of 1 m. Carry out the calculation for the first three modes of the
instrument. What is the difference between the radiation losses of a clarinet and of
a flute with the same pipe dimensions.
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B) How far can we be heard when we scream in quiescent air if we produce 10−5 W
acoustic power?

C) Calculate the ratio between the acoustic impedance experienced by an air bubble of
radius a0 = 1 mm in water at atmospheric pressure:

– in free space;
– in an infinite duct of cross sectional area S = 10−4 m2.

D) Consider two twin pipes of length L and radius a, placed along each other in such
a way that corresponding ends of either pipe just touch each other. Assume that
the pipes are acoustically excited and oscillate in opposite phase. How does the
radiation losses of the system scale with L and a.
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7 Duct acoustics

In a duct of constant cross section the reduced wave (or Helmholtz) equation may
be solved by means of a series expansion in a particular family of solutions, called
modes. They are related to the eigensolutions of the two-dimensional Laplace oper-
ator acting on a cross section. Therefore, the terminology of modes contains many
references to the corresponding eigenvalues.

Modes are interesting mathematically because they form, in general, a complete
basis by which any solution can be represented. Physically, modes are interesting
because they are solutions in their own right, not just mathematical building blocks,
and by their simple structure the usually complicated behaviour of the total field is
more easily understood.

7.1 General formulation

The time-harmonic sound field in a duct of constant cross section with linear
boundary conditions that are independent of the axial coordinate may be described
by an infinite sum of special solutions, called modes, that retain their shape when
travelling down the duct. They consist of an exponential term multiplied by the
eigenfunctions of the Laplace operator corresponding to a duct cross section.

DA

∂A

n

x

y

z

Figure 7.1 A duct D of cross section A.

Consider the two-dimensional area A with a smooth boundary ∂A and an exter-
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nally directed unit normal n. For physical relevance A should be simply connected,
otherwise we would have several independent ducts. When we consider, for defi-
niteness, this area be part of the y, z-plane, it describes the duct D (see Fig. 7.1)
given by

D = {(x, y, z)|(y, z) ∈ A} (7.1)

with axial cross sections being copies of A and where the normal vectors n are
the same for all x . In the usual complex notation (with +iωt–sign convention), the
acoustic field

p(x, t) ≡ p(x, ω) eiωt , v(x, t) ≡ v(x, ω) eiωt (7.2)

satisfies in the duct (x ∈ D) the equations

∇2 p + ω2 p = 0, (7.3a)

iωv +∇ p = 0. (7.3b)

We note in passing that solutions of a more general time-dependence may be con-
structed via Fourier synthesis in ω (equation C.2). At the duct wall we assume the
boundary condition

B(p) = 0 for x ∈ ∂D (7.4)

where B is typically of the form (c.f. for example Eqs. (3.14) or (3.41))

B(p) = a(y, z)(n·∇ p)+ b(y, z)p + c(y, z) ∂
∂x p. (7.5)

The solution of this problem may be given by

p(x, y, z) =
∞∑

n=0

Cnψn(y, z) e−ikn x (7.6)

whereψn are the eigenfunctions of the Laplace operator reduced to A, i.e. solutions
of

−( ∂2

∂y2 + ∂2

∂z2

)
ψ = α2ψ for (y, z) ∈ A,

with B̃(ψ;α) = 0 for (y, z) ∈ ∂A,
(7.7)

where α2 is the corresponding eigenvalue and the eigenmode boundary condition
operator B̃ is

B̃(ψ;α) = a(y, z)(n·∇ψ)+ b(y, z)ψ − ik(α)c(y, z)ψ. (7.8)
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The axial wave number k is given by one of the square roots k = ±√ω2 − α2

(+ for right and − for left running). Each term in the series expansion, i.e.
ψn(y, z) e−ikn x , is called a duct mode. If the duct cross section is circular or rec-
tangular and the boundary condition is uniform everywhere, the solutions of the
eigenvalue problem are relatively simple and may be found by separation of vari-
ables. These eigensolutions consist of combinations of exponentials and Bessel
functions in the circular case or combinations of trigonometric functions in the
rectangular case. Some other geometries, like ellipses, do also allow explicit so-
lutions, but only in special cases such as with hard walls. For other geometries
one has to fall back on numerical methods for the eigenvalue problem. As a final
remark, we note that the above solution only needs a minor adaptation to cope with
a uniform mean flow inside the duct.

By application of Green’s theorem it can easily be shown that the set of eigenfunc-
tions {ψn} is bi-orthogonal to their complex conjugates {ψ∗n }. In other words, the
innerproduct

(ψn, ψ
∗
m) =

∫∫
A

ψnψm dσ

{
= 0 if n �= m,

�= 0 if n = m.
(7.9)

(Some care is required when, due to a symmetric geometry, each αn is linked to
more than one ψn.) This implies that for real ψn and real αn , which is for example
the case for hard-walled ducts where Z = ∞, the set of eigenfunctions is bi-
orthogonal to itself: in other words is orthogonal. This (bi-)orthogonality can be
used to obtain the amplitudes of the expansion. See section 7.7.

In the following sections, we will present the modes with their properties and ap-
plications for cylindrical ducts with both hard walls and soft walls of impedance
type, as well as for rectangular ducts.

7.2 Cylindrical ducts

Consider in a duct, with radius a, uniform sound speed c0 and mean density ρ0,
time-harmonic acoustic waves of angular frequency ω. We scale our variables as
follows

x := ax, t := at/c0, p := ρ0c2
0 p, ρ := ρ0ρ, v := c0v, and ω := ωc0/a,

while intensity scales on ρ0c3
0 and power on ρ0c3

0a2. Note that ω, the dimensionless
frequency or dimensionless free field wave number1, is just the Helmholtz number.

1in dimensional form better known as ka.
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In the present polar coordinates

∇ = ex
∂

∂x
+ er

∂

∂r
+ eϑ

1

r

∂

∂ϑ
, (7.10a)

∇2 = ∂2

∂x2
+ ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϑ2
, (7.10b)

and so the reduced wave equation (7.3a) becomes

∂2 p

∂x2
+ ∂

2 p

∂r2
+ 1

r

∂p

∂r
+ 1

r2

∂2 p

∂ϑ2
+ ω2 p = 0. (7.11)

We begin with a hard-walled hollow duct, which has the wall boundary condition

∂p

∂r
= 0 at r = 1. (7.12)

Solutions of modal type may be found by separation of variables, i.e. by assuming
the form p = F(x)ψ(y, z) = F(x)G(r)H (ϑ)(d2 H

dϑ2

)
/H = −m2 (7.13a)(d2G

dr2
+ 1

r

dG

dr

)
/G = m2

r2
− α2 (7.13b)(d2 F

dx2

)
/F = α2 − ω2 (7.13c)

so that

(a) H (ϑ) = e−imϑ , m = 0,±1,±2, · · · .
Here, use is made of the condition of continuity from ϑ = 0 to ϑ = 2π .

(b) G(r) = Jm(αmµr), µ = 1, 2, · · · , where:
Jm denotes the ordinary Bessel function of the first kind (Appendix D);
αmµ = j ′mµ is theµ-th nonnegative non-trivial zero of J ′m , to satisfy the bound-
ary condition G ′(1) = 0.

(c) F(x) = e∓ikmµx , with:

kmµ =
√
ω2 − α2

mµ such that Re(kmµ) ≥ 0, Im(kmµ) ≤ 0.

Although technically speaking {α2
m,µ} are the eigenvalues of (minus) the cross-

sectional Laplace operator, it is common practice to refer to αmµ as the radial
eigenvalue or radial modal wave number, to m as the circumferential eigenvalue
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or circumferential wave number, and to kmµ as the axial eigenvalue or axial wave
number. The associated solutions are called duct modes, and they form a complete
set of building blocks suitable for constructing any sound field in a duct. At the
same time, they are particular shape-preserving solutions with easily interpretable
properties.

Note that all αmµ and m are real, while only a finite number of kmµ are real; see
figure 7.2). The branch we selected here of the complex square root kmµ is such

-15

-10

-5

0

5

10

15

-8 -6 -4 -2 0 2 4 6 8

k05

k04

k03

k02 k01

−k05

−k04

−k03

−k02−k01

Figure 7.2 Complex axial wave numbers (m = 0, ω = 5).

that e−ikmµx describes a right-running wave and eikmµx a left-running wave. This
will be further clarified later.

These modes (normalized for convenience)

pmµ(x, r, ϑ) = Umµ(r) e−imϑ∓ikmµx, (7.14)

Umµ(r) = Nmµ Jm(αmµr),

Nmµ =
{

1
2 (1− m2/α2

mµ)Jm(αmµ)
2
}−1/2

,

form (for fixed x) a complete set (in L2-norm over (r, ϑ)), so by superposition we
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can write any solution as the following modal expansion:

p(x, r, ϑ) =
∞∑

m=−∞

∞∑
µ=1

(Amµ e−ikmµx +Bmµ eikmµx)Umµ(r) e−imϑ .

(7.15)

The normalization factor Nmµ is chosen such that a modal amplitude Amµ scales
with the energy content of the corresponding mode (see below).

A surface of constant phase, i.e. mϑ + Re(kmµ)x = constant, is a helix of pitch
2πm/Re(kmµ); see figure 7.3.

x-axis

Figure 7.3 Surface of constant phase mϑ + Re(kmµ)x .

An important special case is the plane wave m = 0, µ = 1, with

j ′01 = 0, α01 = 0, k01 = ω, N01 =
√

2, p01 =
√

2 e−iωx .

In fact, this is the only non-trivial eigenvalue equal to zero. All others are greater,
the smallest being given by

j ′11 = 1.84118 · · · .
Since the zeros of J ′m form an ever increasing sequence both in m and in µ (with
j ′mµ � (µ+ 1

2 m − 1
4)π for µ→∞) (see Appendix D), there are for any ω always

a (finite) µ = µ0 and m = m0 beyond which α2
mµ > ω2, so that kmµ is purely

imaginary, and the mode decays exponentially in x .

So we see that there are always a finite number of modes with real kmµ (see figure
7.2). Since they are the only modes that propagate (see below), they are called cut-
on. The remaining infinite number of modes, with imaginary kmµ, are evanescent
and therefore called cut-off. This cut-on and cut-off modes are essentially similar
to the radiating and evanescent waves discussed in section 3.3.
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For low frequency, i.e. for

ω < j ′11 = 1.84118 · · ·
all modes are cut-off except for the plane wave. In this case a plane wave approx-
imation (i.e. considering only the first mode) is applicable if we are far enough
away from any sources, changes in boundary condition, or other scattering objects,
for the generated evanescent modes to become negligible.

From the orthogonality relation2 of equation 7.9 (note that we have here a hard-
walled duct)∫ 1

0

∫ 2π

0
Umµ(r) e−imϑ

(
Unν(r) e−inϑ

)∗
r dϑdr = 2πδmnδµν (7.16)

we find by integration of the time-averaged axial intensity

〈I · ex〉 = 1
4(pu∗ + p∗u)

over a duct cross section x = constant the transmitted acoustic power

P = π
ω

∞∑
m=−∞

∞∑
µ=1

Re(kmµ)(|Amµ|2 − |Bmµ|2)

+2 Im(kmµ) Im(A∗mµBmµ)

. (7.17)

The summation over Re(kmµ) contains only a finite number of non-zero terms: the
cut-on modes. By taking either Amµ or Bmµ equal to zero, it is clear that a cut-
on exp(−ikmµx)-mode propagates in positive direction, and a cut-on exp(ikmµx)-
mode in negative direction (for the present +iωt–sign convention). Indeed, with
Im(kmµ) ≤ 0, the respective cut-off modes decay in the propagation direction,
and we can say that a mode propagates or decays exponentially depending on the
frequency being lower or higher than the cut-off or resonance frequency

fc =
j ′mµc0

2πa
. (7.18)

As is clear from the second part of expression (7.17), cut-off modes may transport
energy by interaction between right- and left-running (Amµ and Bmµ) modes. It
should be noted, however, that (depending on the choice of the origin x = 0)

2 δi j = 1 if i = j, δi j = 0 if i �= j
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usually either the right- or left-running cut-off modes Amµ or Bmµ are exponentially
small, and the product A∗mµBmµ is therefore quickly negligible.

The axial phase velocity (C.19) of a cut-on mode is equal to

vph = ω

kmµ
(7.19)

The axial group velocity (C.22) of a cut-on mode is given by

vg =
(dkmµ

dω

)−1 = kmµ

ω
. (7.20)

Note that

vgvph = 1, with vg < 1 < vph. (7.21)

The axial group velocity is lower than the soundspeed because the modal wave
fronts do not propagate parallel to the x-axis, but rather follow a longer path, spi-
ralling around the x-axis, with a right-hand rotation for m > 0 and a left-hand
rotation for m < 0.

7.3 Rectangular ducts

In a completely analogous way as in the foregoing section 7.2, the general modal
solution, similar to (7.15), of sound propagation in a rectangular hard walled duct,
can be found as follows.

Separation of variables p(x, y, z) = F(x)G(y)H (z) applied to ∇2 p + ω2 p = 0
in the duct 0 ≤ x ≤ a, 0 ≤ y ≤ b, results into Fx x = −α2F , Gyy = −β2G and
Hzz = −(ω2 − α2 − β2)H , where α and β are eigenvalues to be determined from
the hard-wall boundary conditions. We obtain

F(x) = cos(αnx), αn = nπ
a , n = 0, 1, 2, . . .

G(x) = cos(βm x), βm = mπ
b , m = 0, 1, 2, . . .

H (z) = e∓iknm z, knm = (ω2 − α2
n − β2

m)
1/2,

where Re(knm) ≥ 0 and Im(knm) ≤ 0. So the general solution is

p(x, y, z) =
∞∑

n=0

∞∑
m=0

cos(αnx) cos(βm y)(Anm e−iknm z +Bnm eiknm z).

(7.22)
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7.4 Impedance wall

7.4.1 Behaviour of complex modes

When the duct is lined with sound absorbing material of a type that allows little
or no sound propagation in the material parallel to the wall, the material is called
locally reacting and may be described by a wall impedance Z(ω) (scaled on ρ0c0).
This gives in the acoustic problem the following boundary condition in the fre-
quency domain:

iωp
∣∣∣
r=1
= −Z(ω)

∂p

∂r

∣∣∣∣
r=1

, (7.23)

the impedance being defined as p/(v ·n) with n a normal pointing into the surface.
A typical practical example is: the inlet of an aircraft turbojet engine. The previous
concept of a modal expansion, with modes again retaining their shape travelling
down the duct, is also here applicable. The general solution has a form similar to
(7.14) and (7.15), the hard walled case. Only the eigenvalues αmµ are now defined
by

Jm(αmµ)

αmµ J ′m(αmµ)
= i Z

ω
, (7.24)

related to kmµ by the same square root as before:

kmµ =
√
ω2 − α2

mµ,

but another normalization may be more convenient. A normalization that preserves
the relation∫ 1

0
Umµ(r)U

∗
mµ(r)r dϑdr = 1

(note that now the modes are not orthogonal) is

Nmµ =
{ |αmµ J ′m(αmµ)|2 Re(Z)

Im(α2
mµ)ω

}−1/2
. (7.25)

Qualitatively, the behaviour of these modes in the complex kmµ-plane is as follows.

If Im(Z) > 0, all modes may be found not too far from their hard wall values
on the real interval (−ω,ω) or the imaginary axis (that is, with αmµ = j ′mµ, and
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Im(kmµ) ≤ 0.) More precisely, if we vary Z from |Z | = ∞ to Z = 0, αmµ

varies from its |Z | = ∞-value j ′mµ to its Z = 0-value jmµ. ( jmµ is the µ-th zero
of Jm .) These jmµ and j ′mµ are real and interlaced according to the inequalities
j ′mµ < jmµ < jm,µ+1 < etc., so the corresponding kmµ are also interlaced and shift
into a direction of increasing mode number µ.

However, if Im(Z) < 0 (for+iωt-sign convention), a couple of two modes wander
into their quarter of the complex plane in a more irregular way, and in general quite
far away from the others. In figure 7.5 this behaviour is depicted by the trajectories
of the modes as the impedance varies along lines of constant real part (figure 7.4).
Compare this figure with figure 3.1 of the related 2-D problem, which may be
considered as the high-frequency approximation of the duct problem. (Note the
notation! α in the 2-D problem corresponds to kmµ here.) For small enough Re(Z)

�

real axis

imaginary
axis Re(Z) =constant

Z ∈ C

Figure 7.4 Complex impedance plane.

(smaller than, say, 2) we see the first (µ=1) mode being launched into the complex
kmµ-plane when Im(Z) is negative, and then returning as a (for example) µ=4
or 2 mode when Im(Z) is positive. We will call these irregular modes surface
waves: their maximum is at the wall surface, and away from the wall they decay
exponentially ([173]). This is most purely the case for an imaginary impedance
Z = i X . See figure 7.6.

A solution αmµ = i�mµ, �mµ real, may be found3 satisfying

Im(�mµ)

�mµ I ′m(�mµ)
= − X

ω
if − ω

m
< X < 0. (7.26)

The modal shape in r , described by Jm(αmµr) = im Im(�mµr), is exponentially re-
stricted to the immediate neighbourhood of r = 1 and indeed shows the surface
wave character, since the modified Bessel function Im(x) has exponential behav-
iour for x →∞. It is interesting to note that the corresponding axial wave number
kmµ = (ω2 + �2

mµ)
1/2 is now larger than ω. Hence, the modal phase velocity is

3The function h(z) = z I ′m (z)/Im (z) increases monotonically in z, with h(0) = m, and h(z) ∼ z
as z →∞.
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Figure 7.5 Trajectories of kmµ (m = 0, ω = 5) for Im(Z) varying from −∞ to ∞ and fixed
Re(Z) = (a) 0.5, (b) 1.0, (c) 1.5, (d) 2.0.

RienstraHirschberg 19 July 2006 20:00



210 7 Duct acoustics

-10

-5

0

5

10

-20 -15 -10 -5 0 5 10 15 20

k05

k04

k03

k02 k01

−k05

−k04

−k03

−k02−k01

	surface wave


 surface wave

�

�

Figure 7.6 Trajectories of kmµ (m = 0, ω = 5) for Im(Z) varying from −∞ to ∞ and fixed
Re(Z) = 0.0

smaller than the sound speed, which is indeed to be expected for a non-radiating
surface wave. The group velocity (7.20) depends on Z(ω).

7.4.2 Attenuation

Usually, lining is applied to reduce the sound level by dissipation. It is a simple
exercise to verify that the time-averaged intensity at the wall directed into the wall
(i.e. the dissipated power density) of a mode is

〈I · er〉 ∝ Im(α2
mµ). (7.27)

A natural practical question is then: which impedance Z gives the greatest reduc-
tion. This question has, however, many answers. In general, the optimum will de-
pend on the source of the sound. If more than one frequency contributes, we have
to include the way Z = Z(ω) depends on ω. Also the geometry may play a rôle.
Although it is strictly speaking not dissipation, the net reduction may benefit from
reflections at discontinuities in the duct (hard/soft walls, varying cross section).

A simple approach would be to look at the reduction per mode, and to maximize
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Figure 7.7 Trajectories of kmµ (m = 0, ω = 5) passing the Cremer optimum. At Z = (1.4165,
-0.6082) the first two modes coalesce as k01=k02=(4.3057,-0.8857). Im(Z) varies from
−∞ to∞ and Re(Z) is fixed at 1.4165 .

the decay rate of the least attenuated mode, i.e. the one with the smallest | Im(kmµ)|.
A further simplification is based on the observation that the decay rate Im(kmµ) of
a mode increases with increasing order, so that a (relatively) large decay rate is
obtained if the first and second mode (of the most relevant m) coalesce (Cremer
optimum). This is obtained if also the derivative to αmµ of (7.24) vanishes, yielding
the additional condition

J ′m(αmµ)
2 +

(
1− m2

α2
mµ

)
Jm(αmµ)

2 = 0. (7.28)

An example is given in figure 7.7. Note that no mode is lost, as the two correspond-
ing modes degenerate into

Jm(αmµr)Nmµ e−ikmµx−imϑ , (7.29a)(
αmµx Jm(αmµr)− ikmµr J ′m(αmµr)

)
Nmµ e−ikmµx−imϑ . (7.29b)
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7.5 Annular hard-walled duct modes in uniform mean
flow

With uniform mean flow (see equation 2.50), the modal theory still applies. In view
of applications, we consider an annular duct of (scaled) inner radius h.

Consider the following linearized equations for small perturbations(
iω + M

∂

∂x

)
p + ∇·v = 0, (7.30a)(

iω + M
∂

∂x

)
v +∇ p = 0, (7.30b)

with hard-wall boundary conditions. Eliminate v to obtain the convected wave
equation(

iω + M
∂

∂x

)2
p −∇2 p = 0, (7.31)

Note, however, the possibility of convective incompressible pressureless distur-
bances of the form

v = F(r, θ) e−i ωM x , such that ∇·v = 0 and p ≡ 0.

Fully written out, equation (7.31) becomes(
iω + M

∂

∂x

)2
p −

( ∂2

∂x2
+ ∂2

∂r2
+ 1

r

∂

∂r
+ 1

r2

∂2

∂ϑ2

)
p = 0. (7.32)

The eigenvalue problem can now be solved, and we may expand the general solu-
tion in Fourier-Bessel modes

p(x, r, θ) =
∞∑

m=−∞

∞∑
µ=1

(
Amµ e−ik+mµx +Bmµ e−ik−mµx

)
Umµ(r) e−imθ (7.33)

where the radial modes and radial and axial wave numbers satisfy

U ′′mµ +
1

r
U ′mµ +

(
α2

mµ −
m2

r2

)
Umµ = 0 (7.34a)

α2
mµ = (ω − Mkmµ)

2 − k2
mµ (7.34b)

k±mµ =
−ωM ±

√
ω2 − (1− M2)α2

mµ

1− M2
(7.34c)
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and solution

Umµ(r) = Nmµ

(
cos(τmµ)Jm(αmµr)− sin(τmµ)Ym(αmµr)

)
. (7.35)

The corresponding phase and group velocities for cut-on modes are found to be

v±ph =
ω

k±mµ
=
ω2M ± ω

√
ω2 − (1− M2)α2

mµ

ω2 − α2
mµ

, (7.36a)

v±g =
(dk±mµ

dω

)−1= ±(1− M2)

√
ω2 − (1− M2)α2

mµ

ω ∓ M
√
ω2 − (1− M2)α2

mµ

. (7.36b)

Due to the mean flow, the axial modal wave numbers are shifted to the left (M > 0),
or right (M < 0), by a fixed amount of−ωM/

√
1− M2, while the (dimensionless)

cut-off frequency is lowered from ω = αmµ for no flow to ω = αmµ

√
1− M2 with

flow. So with flow more modes are possibly cut-on that without. Note that (for
M > 0) the rightrunning modes that become cut-on in this way (and only these)
have a negative real part of their axial wave number. Indeed, rightrunning modes
with a frequency along the interval

αmµ

√
1− M2 < ω < αmµ

have phase velocities that are opposite to their group velocities, the speed of in-
formation. The same applies for left-running modes if M < 0. Since v+g > 0 and
v−g < 0, this shows that it is not the sign of kmµ but of its radical that corresponds
with the direction of propagation [126]; c.f. equation (7.42).

Eigenvalues αmµ are determined via boundary condition U ′mµ(1) = U ′mµ(h) = 0

J ′m(α)Y
′
m(αh)− J ′m(αh)Y ′m(α) = 0 (7.37)

The normalisation is such that
∫ 1

h U 2(r)r dr = 1 (c.f. [172]), so

Nmµ =
1
2

√
2παmµ{

1− m2/α2
mµ

J ′m(αmµ)2 + Y ′m(αmµ)2
− 1− m2/α2

mµh2

J ′m(αmµh)2 + Y ′m(αmµh)2

} 1
2

(7.38)

and

τmµ = arctan
{ J ′m(αmµ)

Y ′m(αmµ)

}
. (7.39)
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This implies the following choice of signs

cos τmµ = sign(Y ′m(αmµ))
Y ′m(αmµ)√

J ′m(αmµ)2 + Y ′m(αmµ)2
, (7.40a)

sin τmµ = sign(Y ′m(αmµ))
J ′m(αmµ)√

J ′m(αmµ)2 + Y ′m(αmµ)2
, (7.40b)

with the advantage that it reduces to the expected limit Nmµ Jm(αmµr) for h → 0.
Other choices, for example without the factor sign(Y ′m), are also possible.

The modes are physically interesting because their shape remains the same. Math-
ematically, they are interesting because they form a complete and orthonormal L2-
basis for the solutions of the convected wave equation (except for the pressureless
convected perturbations):∫ 2π

0

∫ 1

h
Umµ(r)Unν(r) eimθ e−inθ r drdθ = 2πδmnδµν (7.41)

It is convenient to introduce the Lorentz or Prandtl-Glauert type transformation
(see 3.44 and section 9.1.1)

β =
√

1− M2, x = βX, ω = β�, αmµ = �γmµ

k±mµ =
±�σmµ −�M

β
, γmµ =

√
1− σ 2

mµ,
(7.42)

then we have for pressure p and axial acoustic velocity v

p =
∞∑

m=−∞

∞∑
µ=1

(
Amµ e−i�σmµX +Bmµ ei�σmµX

)
ei�M X Umµ(r) e−imθ

(7.43a)

v =
∞∑

m=−∞

∞∑
µ=1

( σmµ − M

1− Mσmµ
Amµ e−i�σmµX −

σmµ + M

1+ Mσmµ
Bmµ ei�σmµX

)
ei�M X Umµ(r) e−imθ (7.43b)

This includes the important case of the plane wave m = 0, µ = 1, with α01 = 0,
k±01 = ±ω/(1± M) and U01 = (2/(1− h2))1/2, such that

p(x, r, θ) =
[

A01 e−
iωx

1+M +B01 e
iωx

1−M

]( 2

1− h2

)1/2
, (7.44a)

v(x, r, θ) =
[

A01 e−
iωx

1+M −B01 e
iωx

1−M

]( 2

1− h2

)1/2
. (7.44b)
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If we have at position x = 0 a given pressure and axial velocity profiles P(0, r, θ)
and V (0, r, θ), we can expand these profiles in the following Fourier-Bessel series

P(0, r, θ) =
∞∑

m=−∞

∞∑
µ=1

PmµUmµ(r) e−imθ , (7.45a)

V (0, r, θ) =
∞∑

m=−∞

∞∑
µ=1

VmµUmµ(r) e−imθ , (7.45b)

where

Pmµ = 1

2π

∫ 2π

0

∫ 1

h
P(0, r, θ)Umµ(r) eimθ r drdθ, (7.46a)

Vmµ = 1

2π

∫ 2π

0

∫ 1

h
V (0, r, θ)Umµ(r) eimθ r drdθ. (7.46b)

If these pressure and velocity profiles satisfy the above propagation model of sound
in uniform mean flow, the corresponding amplitudes Amµ and Bmµ are found from
identifying

Pmµ = Amµ + Bmµ, (7.47a)

Vmµ = σmµ − M

1− Mσmµ
Amµ − σmµ + M

1+ Mσmµ
Bmµ, (7.47b)

leading to

Amµ =
(1− Mσmµ)(σmµ + M)Pmµ + (1− M2σ 2

mµ)Vmµ

2σmµ(1− M2)
, (7.48a)

Bmµ =
(1+ Mσmµ)(σmµ − M)Pmµ − (1− M2σ 2

mµ)Vmµ

2σmµ(1− M2)
. (7.48b)

From the axial intensity in hard-walled flow duct

〈I x〉 = 1
2 Re

[
(1+ M2)pu∗ + M|p|2 + M|u|2] (7.49)
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we obtain the axial power:

P = πβ4
∞∑

m=−∞

µ0∑
µ=1

σmµ

[ |Amµ|2
(1− Mσmµ)2

− |Bmµ|2
(1+ Mσmµ)2

]
+

+ 2πβ4
∞∑

m=−∞

∞∑
µ=µ0+1

|σmµ|
(1+ M2σ 2

mµ)
2 ·

·[Im(AmµB∗mµ)(1− M2σ 2
mµ)− Re(AmµB∗mµ)2M|σmµ|

]
(7.50)

where µ0 is the number of cut-on modes. Note the coupling between left- and
right-running cut-off modes.

7.6 Behaviour of soft-wall modes and mean flow

Consider a cylindrical duct with soft wall of specific impedance Z and uniform
mean flow of Mach number M . For this configuration the acoustic field allows
again modes, similar to the no-flow situation, although their behaviour with respect
to possible surface waves is more complicated [179].

We start with modes of the same form as for the hard wall case (equations 7.33
with 7.42, and 7.43a) for pressure p and radial velocity v

p = e−i�σ X+i�M X Jm(�γ r), v = iβγ

1− Mσ
e−i�σ X+i�M X J ′m(�γ r),

where γ 2+σ 2 = 1 and the sign selected of σ depends (in general) on the direction
of propagation. We dropped the exponentials with iωt and imθ . From the boundary
condition (see equation 3.41)

iωZv = (
iω + M ∂

∂x

)
p

we find the equation for reduced axial wave number σ for any given Z , m, and ω

(1− Mσ )2 Jm(�γ )− iβ3 Zγ J ′m(�γ ) = 0. (7.51)

A graphical description of their behaviour as a function of Im Z (from +∞ down
to −∞) and fixed Re Z is given in the series of figures (7.8). For large enough
frequency, ω, the behaviour of the modes can be classified as follows. When σ is
near a hard-wall value, the mode described is really of acoustic nature, extending
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radially through the whole duct. However, when σ is far enough away from a hard-
wall value, the imaginary part of �γ becomes significant. The complex Bessel
function Jm(�γ r) becomes exponentially decaying away from the wall, and the
mode is radially restricted to the duct wall region. In other words, it has become
a surface wave, of two-dimensional nature, approximately described by the theory
of section 3.2.6 (eqn. 3.45).

The “egg” (figure 3.3), indicating the location of possible surface waves in the 2D
limit, is drawn in the figures by a dotted line. The 2D surface wave solutions are
indicated by black lines. The behaviour of the modes is to a certain extent similar
to the no-flow situation (section 7.4.1, figures 7.5), although the effect of the mean
flow is that we have now 4 rather than 2 possible surface waves.

For large Re Z , the modes remain near their hard-wall values. For lower values
of Re Z the behaviour becomes more irregular. The modes change position with a
neighbour, and some become temporarily a surface wave. The two hydrodynamic
modes disappear to infinity for Im Z →−∞ like is described in equation (3.46).

7.7 Source expansion

7.7.1 Modal amplitudes

A source at x = 0, defined by

p(x, r, ϑ)
∣∣∣

x=0
= p0(r, ϑ)

produces in a hard walled duct a sound field (7.15) with modal amplitudes given
by (in x > 0)

Amµ = 1

2π

∫ 2π

0

∫ 1

0
p0(r, ϑ)Umµ(r) eimϑ r drdϑ (7.52a)

Bmµ = 0 (7.52b)

(use (7.16)), and the same in x < 0 but with A and B interchanged. Note that,
similar to the evanescent waves of section 3.3, details of the source (averaged out
for the lower modes in the process of integration), only contribute to higher order
modes and do not generate sound if these modes are cut-off.
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Figure 7.8 Trajectories of reduced wave number σmµ (m = 1, ω = 5) where M = 0.5, for Im(Z)
varying from−∞ to∞ and fixed Re(Z). The 2D surface wave solutions of eqn. (3.45)
are included as black lines.
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7.7.2 Rotating fan

Of practical interest, especially in aircraft noise reduction [208], is the following
model of a propeller or fan with B identical blades, equally spaced �ϑ = 2π/B
radians apart, rotating with angular speed �. If at some time t = 0 at a fixed
position x the field due to one blade is given by the shape function q(ϑ, r), then
from periodicity the total field is described by

p(r, ϑ, 0) = q(ϑ, r) + q(ϑ −�ϑ, r)+ · · · + q(ϑ − (B − 1)�ϑ, r)

=
B−1∑
k=0

q
(
ϑ − 2πk

B , r
)
.

This function, periodic in ϑ with period 2π/B, may be expanded in a Fourier
series:

p(ϑ, r, 0) =
∞∑

n=−∞
qn(r) e−inBϑ .

Since the field is associated to the rotor, it is a function of ϑ −�t . So at a time t

p(ϑ, r, t) =
B−1∑
k=0

q
(
ϑ −�t − 2πk

B , r
) = ∞∑

n=−∞
qn(r) einB�t−inBϑ (7.53)

(with q−n = q∗n because p is real). Evidently, the field is built up from harmonics
of the blade passing frequency B�. Note that each frequency ω = n B� is now
linked to a circumferential periodicity m = n B, and we jump with steps B through
the modal m-spectrum. Since the plane wave (m = 0) is generated with frequency
ω = 0 it is acoustically not interesting, and we may ignore this component. An
interesting consequence for a rotor in a duct is the observation that it is not obvious
if there is (propagating) sound generated at all: the frequency must be higher than
the cut-off frequency. For any harmonic (n > 0) we have:

fm = m�

2π
>

j ′m1c0

2πa
(7.54)

which is for the tip Mach number Mtip the condition

Mtip = a�

c0
>

j ′m1

m
. (7.55)
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Since the first zero of J ′m is always (slightly) larger than m (Appendix D), it implies
that the tip must rotate supersonically (Mtip > 1) for the fan to produce sound.

Of course, in practice a ducted fan with subsonically rotating blades will not be en-
tirely silent. For example, ingested turbulence and the turbulent wake of the blades
are not periodic and will therefore not follow this cut-off reduction mechanism. On
the other hand, if the perturbations resulting from blade thickness and lift forces
alone are dominating as in aircraft engines, the present result is significant, and in-
deed the inlet fan noise level of many aircraft turbo fan engines is greatly enhanced
at take off by the inlet fan rotating supersonically (together with other effects lead-
ing to the so-called buzzsaw noise ([199])).

7.7.3 Tyler and Sofrin rule for rotor-stator interaction

The most important noise source of an aircraft turbo fan engine at inlet side is the
noise due to interaction between inlet rotor and neighbouring stator.

inlet plane

spinner

inlet duct

by-pass ductrotor st
at

or

(core engine)

nacelle

acoustic lining

Figure 7.9 Sketch of high by-pass turbo fan engine. Fan or inlet rotor of low pressure compressor is
drawn. The other compressor stages (intermediate and high pressure) are only indicated.

Behind the inlet rotor, or fan, a stator is positioned (figure 7.9) to compensate
for the rotation in the flow due to the rotor. The viscous and inviscid wakes from
the rotor blades hit the stator vanes which results into the generation of sound
([196]). A very simple but at the same time very important and widely used device
to reduce this sound is the “Tyler and Sofrin selection rule” ([199, 208]). It is
based on elegant manipulation of Fourier series, and amounts to nothing more
than a clever choice of the rotor blade and stator vane numbers, to link the first
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(few) harmonics of the sound to duct modes that are cut-off and therefore do not
propagate.

Consider the same rotor as above, with B identical blades, equally spaced �ϑ =
2π/B radians apart, rotating with angular speed �, and a stator with V identical
vanes, equally spaced �ϑ = 2π/V radians apart. First, we observe that the field
generated by rotor-stator interaction must have the time dependence of the rotor,
and is therefore built up from harmonics of the blade passing frequency B�. Fur-
thermore, it is periodic in ϑ , so it may be written as

p(r, ϑ, t) =
∞∑

n=−∞
Qn(r, ϑ) einB�t =

∞∑
n=−∞

∞∑
m=−∞

Qnm(r) einB�t−imϑ .

However, we can do better than that, because most of the m-components are just
zero. The field is periodic in ϑ with the stator periodicity 2π/V in such a way
that when we travel with the rotor over an angle �ϑ = 2π/V in a time step
�t = �ϑ/� the field must be the same:

p(r, ϑ, t) =
∞∑

n=−∞

∞∑
m=−∞

Qnm(r) einB�(t−�t)−im(ϑ−�ϑ) .

This yields for any m the restriction: −in B��t + im�ϑ = 2π ik, or

m = kV + n B (7.56)

where k is any integer, and n the harmonic of interest. By selecting B and V such
that the lowest |m| possible is high enough for the harmonic of interest to be cut-off,
this component is effectively absent for a long enough inlet duct. In practice, only
the first harmonic is reduced in this way. A recent development is that the second
harmonic, which is usually cut-on, is reduced by selecting the mode number m to
be of opposite sign of n, which means: counter rotating with respect to the rotor.
In this case the rotor itself acts as a shield obstructing the spiralling modes to leave
the duct ([196]).

In detail: for a cut-off n-th harmonic (we only have to consider positive n) we need

n B�

2π
<

j ′m1c0

2πa
or n B Mtip < j ′m1.

Since typically Mtip is slightly smaller than 1 and j ′m1 is slightly larger than |m| we
get the analogue of evanescent wave condition k < |α| (section 3.3)

n B ≤ |m| = |kV + n B|.

RienstraHirschberg 19 July 2006 20:00



222 7 Duct acoustics

The only values of kV for which this inequality is not satisfied automatically is
in the interval −2n B < kV < 0. If we make the step size V big enough so that
we avoid this interval for k = −1, we avoid it for any k. So we have finally the
condition: V ≥ 2n B.

Consider, as a realistic example, the following configuration of a rotor with B = 22
blades and a stator with V = 55 vanes. The generated m-modes are for the first
two harmonics:

for n = 1: m = · · · , −33, 22, 77, · · · ,
for n = 2: m = · · · , −11, 44, 99, · · · ,

which indeed corresponds to only cut-off modes of the first harmonic (m = 22 and
larger) and a counter rotating cut-on second harmonic (m = −11).

7.7.4 Point source in a lined flow duct

Consider a cylindrical duct of non-dimensional radius 1, a mean flow of subsonic
Mach number M , and harmonic pressure and velocity perturbations p of non-
dimensional angular frequency ω. The pressure is excited by a point source at x0,
and satisfies the equation

∇2 p −
(

iω + M
∂

∂x

)2
p = δ(x − x0), (7.57)

so p(x; x0) represents the Green’s function of the system. Note that we use the
eiωt - convention. The impedance boundary condition at r = 1 (3.41), becomes in
terms of the pressure(

iω + M
∂

∂x

)2
p + iωZ

∂p

∂r
= 0 at r = 1. (7.58)

For a hollow duct finiteness of p is assumed at r = 0. Finally, we adopt radiation
conditions that says that we only accept solutions that radiate away from the source
position x0.

We represent the delta-function by a generalised Fourier series in ϑ and Fourier
integral in x

δ(x − x0) = δ(r − r0)

r0

1

2π

∫ ∞
−∞

e−iκ(x−x0) dκ
1

2π

∞∑
m=−∞

e−im(ϑ−ϑ0) . (7.59)
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where 0 < r0 < 1, and write accordingly

p(x, r, ϑ) =
∞∑

m=−∞
e−im(ϑ−ϑ0) pm(r, x)

=
∞∑

m=−∞
e−im(ϑ−ϑ0)

∫ ∞
−∞

p̂m(r, κ) e−iκ(x−x0) dκ. (7.60)

Substitution of (7.59) and (7.60) in (7.57) yields for p̂m

∂2 p̂m

∂r2
+ 1

r

∂ p̂m

∂r
+
(
α2 − m2

r2

)
p̂m = δ(r − r0)

4π2r0
,

with

α2 = �2 − κ2, � = ω − κM.

This has solution

p̂m(r, κ) = A(κ)Jm(αr)+ 1
8π H (r−r0)

(
Jm(αr0)Ym(αr)−Ym(αr0)Jm(αr)

)
where use is made of the Wronskian

Jm(x)Y
′
m(x)− Ym(x)J

′
m(x) =

2

πx
. (7.61)

A prime denotes a derivative to the argument, x . A(κ) is to be determined from the
boundary conditions at r = 1, which is (assuming uniform convergence) per mode

i�2 p̂m + ωZ p̂′m = 0 at r = 1.

A prime denotes a derivative to r . This yields

A = 1

8π

[
Ym(αr0)− i�2Ym(α)+ ωαZY ′m(α)

i�2 Jm(α)+ ωαZ J ′m(α)
Jm(αr0)

]
,

and thus

p̂m(r, κ) = Jm(αr<)
i�2Gm(r>, α)+ ωZ Hm(r>, α)

8πEm(κ)
,

where r> = max(r, r0), r< = min(r, r0) and

Em(κ) = i�2 Jm(α)+ ωαZ J ′m(α)
Gm(r, α) = Jm(α)Ym(αr)− Ym(α)Jm(αr)

Hm(r, α) = α J ′m(α)Ym(αr)− αY ′m(α)Jm(αr)
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By substituting the defining series we find that Gm and Hm are analytic functions
of α2, while both Em and Jm(αr<) can be written as αm times an analytic function
of α2. As a result, p̂m(r, κ) is a meromorphic4 function of κ . It has isolated poles
κ = κ±mµ, given by

Em(κ
±
mµ) = 0,

which is equivalent to (7.51). The final solution is found by Fourier back-trans-
formation: close the integration contour around the lower half plane for x > x0

to enclose the complex modal wave numbers of the right-running modes, and the
upper half plane for x < x0 to enclose the complex modal wave numbers of the
left-running modes. In figure 7.10 a typical location of the integration contour with
no-flow modes is shown. See also figures 7.5, 7.6 and 7.8.

κ ∈ C

•
ω

•−ω ×
×

×
×

×

×

×

×

×

×

Figure 7.10 Contour of integration in the κ-plane.

We define

Qmµ = ±
[
(κmµ +�mµM)

(
1− m2

α2
mµ

− �4
mµ

(ωαmµZ)2

)
− 2i M�mµ

ωZ

]
,

where +/− relates to right/left-running modes. With the result

dEm

dκ

∣∣∣∣
κ=κmµ

= ±ωZ QmµJm(αmµ)

4A meromorphic function is analytic on the complex plane except for isolated poles.
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the integral is evaluated as a sum over the residues in the poles at κ = κ+mµ for
x > x0 and at κ−mµ for x < x0. From eigenvalue equation Em(κ

±
mµ) = 0 and the

Wronskian (7.61) we obtain

i�2
mµGm(r>, αmµ)+ ωZ Hm(r>, αmµ) = − 2ωZ

π Jm(αmµ)
Jm(αmµr>).

where αmµ = α(κmµ). We can skip the distinction between r> and r< and achieve
the soft wall modal expansion

pm(r, x) = − 1

2π i

∞∑
µ=1

Jm(αmµr)Jm(αmµr0)

Qmµ J 2
m(αmµ)

e−iκmµ(x−x0) (7.62)

where for x > x0 the sum pertains to the right-running waves, corresponding to the
modal wave numbers κ+mµ found in the lower complex half plane, and for x < x0

the left-running waves, corresponding to κ−mµ found in the upper complex half plane
(see [179]).

Only if a mode from the upper half plane is to be interpreted as a right-running
instability (their existence is still an unresolved problem), its contribution is to
be excluded from the set of modes for x < x0 and included in the modes for
x > x0. The form of the solution remains exactly the same, as we do no more than
deforming the integration contour into the upper half plane.

It may be noted that expression (7.62) is continuous in (x, r), except at (x0, r0)

where the series slowly diverges like a harmonic series. As may be expected from
the symmetry of the configuration, the clockwise and anti-clockwise rotating cir-
cumferential modes are equal, i.e. pm(r, x) = p−m(r, x).

Solution (7.62) is very general. It includes both the no-flow solution (take M = 0)
and the hard walled duct (take Z = ∞). Without mean flow the problem becomes
symmetric in x and it may be notationally convenient to write α±mµ = αmµ, κ+mµ =
κmµ and κ−mµ = −κmµ.

Finding all the eigenvalues κ±mµ is evidently crucial for the evaluation of the se-
ries (7.62), in particular when surface waves (Section 3.2.6) occur. An example of
pm(x, r) is plot in figure 7.11.

7.7.5 Point source in a duct wall

A problem, closely related to the previous one, is the field from a source v ·er =
−δ(x − x0) in the duct wall r = 1. Consider for simplicity a hard-walled duct
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without mean flow. We have for the pressure

1

iω

∂p

∂r

∣∣∣∣
r=1

= 1

2π

∫ ∞
−∞

e−iκ(x−x0) dκ
1

2π

∞∑
m=−∞

e−im(ϑ−ϑ0) . (7.63)

We solve equation (7.3a) again via Fourier transformation in x , and Fourier series
expansion in ϑ . We obtain

p(x, r, ϑ) =
∞∑

m=−∞
e−im(ϑ−ϑ0)

∫ ∞
−∞

Am(κ)Jm(α(κ)r) e−iκ(x−x0) dκ (7.64)

where α(κ)2 = ω2 − κ2. From the Fourier transformed boundary condition (7.63)
it follows that αAm J ′n(α) = −ω/4π2i , so

p(x, r, ϑ) = − ω

4π2i

∞∑
m=−∞

e−im(ϑ−ϑ0)

∫ ∞
−∞

Jm(αr)

α J ′m(α)
e−iκ(x−x0) dκ.

The poles of the meromorphic5 integrand are found at κ = ±κmµ (we use the
symmetry in x), and since the waves must be outgoing the integration contour in the
κ-plane must be located as in figure 7.10. Closing the contour via Im(κ) → −∞
for x > 0 and via Im(κ) → +∞ yields the solution, in the form of a series over
the residue-contributions6 in κ = ±κmµ. This yields the modal expansion

p(x, r, ϑ) = ω

2π

∞∑
m=−∞

∞∑
µ=1

Jm(αmµr) e−iκmµ|x−x0|−im(ϑ−ϑ0)

(1− m2/α2
mµ)Jm(αmµ)κmµ

. (7.65)

5A meromorphic function is analytic on the complex plane except for isolated poles.
6Near κ = κmµ is J ′m(α(κ)) � −(κ − κmµ)κmµα

−1
mµ J ′′m(αmµ).
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Figure 7.11 Eigenvalues κ±mµ and Re(pm), Im(pm) and |pm | is plot of the m = 5-th component of
the point source field in a lined flow duct with ω = 10, Z = 0.1−3i, x0 = 0, r0 = 0.7,
M = 0.5 at r = 0.7 and θ = θ0. Note the presence of 3 surface waves.

RienstraHirschberg 19 July 2006 20:00



7.7 Source expansion 227

The contribution of the m = 0, µ = 1 plane-wave mode is

1

2π
e−iω|x | .

7.7.6 Vibrating duct wall

When, instead of a point, a finite part of the wall vibrates (e.g. [99]) as

r = 1− η(x, ϑ) eiωt for − L ≤ x ≤ L (7.66)

then the solution may be found as follows. We write as a Fourier sum

η(x, ϑ) =
∞∑

m=−∞
e−imϑ ηm(x) =

∞∑
m=−∞

e−imϑ
∫ ∞
−∞
η̂m(κ) e−iκx dκ.

Similar to above we find the solution p(x, r, ϑ) as a formal Fourier integral,
which can be rewritten, by using result (7.65) and the Convolution Theorem (C.10)
(p.300), as

p(x, r, ϑ) = iω2
∞∑

m=−∞

∞∑
µ=1

1

κmµ

α2
mµ

α2
mµ − m2

Jm(αmµr)

Jm(αmµ)
e−imϑ · · ·

· · ·
∫ L

−L
ηm(x

′) e−iκmµ|x−x ′| dx ′ (7.67)

with the plane-wave contribution

iω
∫ L

−L
η0(x

′) e−iω|x−x ′| dx ′.

A naive interpretation of this formula might suggest the contradictory result that
the field, built up from hard-wall modes with vanishing r-derivative at the wall,
does not satisfy the boundary condition of the moving wall. This is not the case,
however, because the infinite series is not uniformly converging (at least, its radial
derivative). Pointwise, the value at the wall is not equal to the limit to the wall,
while it is only the limit which is physically relevant.

Although in the source region no simple modes can be recognized, outside this
region, i.e. for |x| > L , the remaining integral is just the Fourier transform times
exponential, η̂m(±κmµ) exp(−κmµ|x|), and the solution is again just a modal sum
of right- or left-running modes.
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r = a

r = b

Figure 7.12 Duct with discontinuous diameter.

7.8 Reflection and transmission at a discontinuity in
diameter

One single modal representation is only possible in segments of a duct with con-
stant properties (diameter, wall impedance). When two segments of different prop-
erties are connected to each other we can use a modal representation in each seg-
ment, but since the modes are different we have to reformulate the expansion of
the incident field into an expansion of the transmitted field in the neighbouring
segment, using conditions of continuity of pressure and velocity. This is called:
mode matching. Furthermore, these continuity conditions cannot be satisfied with
a transmission field only, and a part of the incident field is reflected. Each mode is
scattered into a modal spectrum of transmitted and reflected modes.

Consider a duct with a discontinuity in diameter at x = 0 (figure 7.12): a radius a
along x < 0 and a radius b along x > 0, with (for definiteness) a > b. Because
of circumferential symmetry there is no scattering into other m-modes, so we will
consider only a single m-mode.

The field pin, incident from x = −∞ and given by (see equation 7.14)

pin =
∞∑
µ=1

AmµUmµ(r) e−ikmµx−imϑ, (7.68a)
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is scattered at x = 0 into the reflected wave pref

pref =
∞∑
µ=1

BmµUmµ(r) eikmµx−imϑ, (7.68b)

Bmµ =
∞∑
ν=1

Rmµν Amν , or B = RA,

and into the transmitted wave ptr

ptr =
∞∑
µ=1

CmµÛmµ(r) e−i
mµx−imϑ, (7.68c)

Ûmµ(r) = N̂mµ Jm(βmµr),

Cmµ =
∞∑
ν=1

Tmµν Amν , or C = T A.

Ûmµ(r) and N̂mµ are the obvious generalizations of Umµ(r) and Nmµ on the interval
[0, b]. Suitable conditions of convergence of the infinite series are assumed, while

αmµ = j ′mµ/a, kmµ =
√
ω2 − α2

mµ, Im(kmµ) ≤ 0,

βmµ = j ′mµ/b, 
mµ =
√
ω2 − β2

mµ, Im(
mµ) ≤ 0.

The matrices R and T are introduced to use the fact that each incident mode re-
flects and transmits into a modal spectrum. When acting on the incident field ampli-
tude vector A, they produce the reflection and transmission field amplitude vectors
B and C. Therefore, they are called “reflection matrix” and “transmission matrix”.

At the walls we have the boundary condition of vanishing normal velocity. At the
interface x = 0, 0 ≤ r ≤ b we have continuity of pressure and axial velocity.

At the edges we have the so-called edge condition [124]: the energy integral of the
field in a neighbourhood of an edge must be finite (no source hidden in the edge).
This condition is necessary in a geometry with edges because the boundary condi-
tions lose their meaning at an edge, whereas the differential equation is not valid
at the boundary. In the context of modal series expansions this condition is related
to the convergence rate of the series. A δ-function type of a spurious edge source
generates a divergent series expansion (to be interpreted as a generalized function;
section C.2). Although its rôle remains in the usual engineering practice somewhat
in the background, the edge condition is certainly important in the present problem.
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Since the problem is linear it is sufficient to determine the scattered field of a single
µ-mode. It then follows that the continuity of pressure at the interface

∞∑
ν=1

(Rmνµ + δνµ)Umν =
∞∑
ν=1

TmνµÛmν (7.69)

yields, after multiplication with Ûmλ(r)r , integration from 0 to b, and using ortho-
normality, the following relation7 to express Tmλµ in the vector Rm·µ:

∞∑
ν=1

〈
Ûmλ ,Umν

〉
b
(Rmνµ + δνµ) = Tmλµ, (7.70)

where 〈
f ,g

〉
b
=
∫ b

0
f (r)g(r)r dr.

This integral may be evaluated by using equations (D.57) and (D.58). The continu-
ity of axial velocity at the interface

∞∑
ν=1

kmν(Rmνµ − δνµ)Umν = −
∞∑
ν=1


mνTmνµÛmν (7.71)

yields, after multiplication with Umλ(r)r , integration from 0 to a of the left hand
side, and from 0 to b of the right hand side, using px = 0 on b ≤ r ≤ a, the
following relation expressing Rmλµ in the vector Tm·µ:

kmλ(Rmλµ − δλµ) = −
∞∑
ν=1

〈
Umλ ,Ûmν

〉
b

mνTmνµ. (7.72)

Both equations (7.70) and (7.72) are valid for any λ and µ, so we can write in
matrix notation

M(R + I ) = T ,

k (R − I ) =M�� T ,
(7.73)

for identity matrix I , matrix M and its transpose M�, and diagonal matrices k and
�, given by

Mλν =
〈
Ûmλ ,Umν

〉
b
, kλν = δλνkmλ, �λν = δλν
mλ.

7 δi j = 1 if i = j, δi j = 0 if i �= j .
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So we have formally the solution

R = (k −M��M)−1(k +M��M) (7.74)

which can be evaluated by standard techniques for any sufficiently large truncated
matrices.

A suitable choice of truncation [114, 115, 176, 224], allowing for a certain balance
between the accuracy in x < 0 and in x > 0, is to include proportionally more
terms in the wider duct: a truncation of the series of (7.70) after, say, P terms and
of (7.72) after Q terms, with P/a � Q/b. This gives truncated matrices MQ×P ,
M�

P×Q , kP×P , �Q×Q , so that we obtain RP×P and TQ×P .

It should be noted that if we take P/Q very much different from a/b, we may
converge for P, Q → ∞ to another solution (7.74) than the physical one. This is
not an artefact of the method: the solution is indeed not unique, because we have
not yet explicitly satisfied the edge condition. The behaviour near the edge depends
on the way we let P and Q tend to infinity, and the edge condition is satisfied if
their ratio remains: P/Q � a/b.

7.8.1 The iris problem

When an abrupt contraction of the duct diameter is immediately followed by an
expansion to the previous diameter (an infinitely thin orifice plate), we call this an
iris. In this case one might be tempted to solve the problem directly by matching
the modal expansions at either side of the iris plate. This solution will, however,
either not or very slowly converge to the correct (i.e. physical) solution.

The above method of section 7.8, however, is well applicable to this problem too, if
we consider the iris as a duct (albeit of zero length) connecting the two main ducts
at either side of the iris. Each transition (from duct 1 to the iris, and from the iris to
duct 2) is to be treated as above. Since the matrices of each transition are similar,
the final system of matrix equations may be further simplified [176].

7.9 Reflection at an unflanged open end

The reflection at and radiation from an open pipe end of a modal sound wave de-
pends on the various problem parameters like Helmholtz number ω, mode numbers
m, µ and pipe wall thickness. A canonical problem amenable to analysis is that of
a hard-walled, cylindrical, semi-infinite pipe of vanishing wall thickness. The exact
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solution (by means of the Wiener-Hopf technique) was first found by Levine and
Schwinger (for m = 0) in their celebrated paper [106]. Generalizations for higher
modes may be found in [220] and with uniform [172] or jet mean flow [134, 135].

Inside the pipe we have the incident mode with reflected field, given by p(x, r, ϑ) =
pm(x, r) e−imϑ where

pm(x, r) = Umµ(r) e−ikmµx +
∞∑
µ=1

RmµνUmµ(r) eikmν x . (7.75)

Outside the pipe we have in the far field

pm(x, r) � Dmµ(ξ)
e−iω�

ω�
(ω�→∞), (7.76)

where x = � cos ξ , r = � sin ξ , and Dmµ(ξ) is called the directivity function, and
|Dmµ(ξ)| is the radiation pattern.

The reflection matrix {Rmµν} and the directivity function are both described by
complex integrals, which have to be evaluated numerically. Some important prop-
erties are:

• At resonance ω = αmµ we have total reflection in itself, Rmµµ = −1, and no
reflection in any other mode, Rmµν = 0.

• Near resonance ω ∼ αmµ the modulus |Rmµν(ω)| behaves linearly from the
left, and like a square root from the right side; the behaviour of the phase
arg(Rmµν(ω)) is similar but reversed: linearly from the right and like a square
root from the left.

• A reciprocity relation between the µ, ν and the ν, µ-coefficients:

kmνRmµν = kmµRmνµ.

• In the forward arc, 0 < ξ < 1
2π , Dmµ(ξ) consists of lobes (maxima interlaced

by zeros), while D01(0) = 1
2

√
2 iω2 and Dmµ(0) = 0.

• In the rearward arc, 1
2π ≤ ξ < π , Dmµ(ξ) is free of zeros, and tends to zero for

ξ → π if m ≥ 1 and to a finite value if m = 0.

• If kmν is real and ν �= µ, the zeros of Dmµ(ξ) are found at

ξ = arcsin(αmν/ω).

• If the mode is cut on, the main lobe is located at

ξmµ = arcsin(αmµ/ω).

• If ω→ 0, the radiation pattern of the plane wave mµ = 01 becomes spherically
shaped and small like O(ω2), while the reflection coefficient becomes R011 �
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− exp(−i 2δω), where δ = 0.6127. The dimensional distance δa is called the
end correction, since x = δa is a fictitious point just outside the pipe, at which
the wave appears to reflect with p = 0. See also (6.95,5.39).

Based on the method presented in [172], plots of Rmµν and |Dmµ(ξ)| may be gen-
erated, as given in figures 7.13 and 7.14.

Of the reflection coefficient we have plotted modulus |Rmµν(ω)| and phase φmµν =
arg(Rmµν) as a function of ω = 0 . . . 7., for m = 0 . . . 2 and µ, ν = 1, 2. Note
that the resonance (cut-off) frequencies are ω = 3.8317 and 7.0156 for m = 0,
ω = 1.8412 and 5.3314 for m = 1, and ω = 3.0542 and 6.7061 for m = 2.

The radiation pattern is plotted, on dB-scale, of the first radial mode (µ = 1) for
m = 0 and m = 1, and ω = 2, 4, 6. For m = 0 the main lobe is at ξ01 = 0, while
the zeros are found for ω = 4 at ξ = 73.3◦, and for ω = 6 at ξ = 39.7◦. For m = 1
we have the main lobe at ξ11 = 67.0◦, 27.4◦, 17.9◦ for ω = 2, 4, 6. The zero is
found at ξ = 62.7◦ for ω = 6.

Furthermore, the trend is clear that for higher frequencies the refraction effects be-
come smaller, and the sound radiates more and more like rays [22]. It is instructive
to compare the wave front velocity of a mode (the sound speed, dimensionless 1)
and the axial phase velocity vph (7.19). As the mode spirals through the duct, the
wave front makes an angle ξmµ with the x-axis such that cos(ξmµ) = 1/vph =
kmµ/ω. Indeed,

ξmµ = arccos(kmµ/ω) = arcsin(αmµ/ω)

is the angle at which the mode radiates out of the open end, i.e. the angle of the
main lobe.

Exercises

a) Consider a hard-walled duct of radius a = 0.1 m with an acoustic medium with
c0 = 340 m/s. A harmonic source with frequency f = 500 Hz is positioned at
x = 0 half-way the radius. A microphone is to be placed an axial distance x = D
away from the source, such that the plane wave is detected at least 20 dB louder
than the other modes.
– What is the cut-off frequency ?
– Assuming that all excited modes have about the same initial amplitude, ignoring

details like r -variation of higher-order modes: what is the necessary distance D?
– What is D for frequency f tending to zero ?

b) Investigate the behaviour of kmµ (equation 7.26) for ω → ∞. Find analytical ap-
proximate expressions of the surface waves.
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Figure 7.13 Modulus and phase of reflection coefficients Rmµν for m = 0 . . . 2, µ, ν = 1, 2, as a
function of ω = 0 . . . 7.

RienstraHirschberg 19 July 2006 20:00



7.9 Reflection at an unflanged open end 235

20

60

100

30

210

60

240

90

270

120

300

150

330

180 0

20

60

100

30

210

60

240

90

270

120

300

150

330

180 0

Figure 7.14 Radiation pattern 20 log10 |Dmµ| + 71.7 for mµ = 01,= 11 and ω = 2, 4, 6.

c) Find in a similar way as for equation (7.65), by Fourier transformation to x , the
field of a harmonic point source inside a hard-walled infinite duct. Verify this by an
alternative approach based on representation (D.56).

RienstraHirschberg 19 July 2006 20:00



8 Approximation methods

Almost any mathematical model of a physical phenomenon can be considered as
one in a hierarchy of increasing complexity. Either explicitly and systematically, or
implicitly on a more intuitive basis, any modelling process consists of selecting a
suitable model, and subsequently moving up or down in the hierarchy, investigating
possible reductions or simplifications, or necessary extensions.

It is important to realize that these levels of modelling are not discrete steps, but
gradual and smooth changes from one form into another.

Models and theories, applicable in a certain situation, are not “isolated islands of
knowledge” provided with a logical flag, labelling it “valid” or “invalid”. There are
always in the higher-level theory one or more inherent modelling parameters which
become large or small and hence giving in the limit a simpler description [33]. Ex-
amples are numerous: simplified geometries reducing the spatial dimension, small
amplitudes allowing linearization, low velocities and long time scales allowing in-
compressible description, small relative viscosity allowing inviscid models, zero
or infinite lengths rather than finite lengths, etc.

The question is: how can we use this gradual transition between models of different
level. Of course, when a certain aspect or effect, previously absent from our model,
is included in our model, the change is abrupt and usually the corresponding equa-
tions are more complex and more difficult to solve. This is, however, only true if
we are merely interested in exact or numerically “exact” solutions. But an exact
solution of an approximate model is not better than an approximate solution of an
exact model. So there is absolutely no reason to demand the solution to be more
exact than the corresponding model. If we accept approximate solutions, based
on the inherent small or large modelling parameters, we do have the possibilities
to gradually increase the complexity of a model, and study small but significant
effects in the most efficient way.

The methods utilizing systematically this approach are called “perturbations meth-
ods”. Usually, a distinction is made between regular and singular perturbations. A
(loose definition of a) regular perturbation is where the solution of the approximate
problem is everywhere close to the solution of the unperturbed problem.
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In acoustics we have as typical examples of modelling hierarchies: wave propaga-
tion in a uniform medium or with simple boundaries being considerably simpler
than in a non-uniform medium or with complicated boundaries. For a uniform
medium and simple boundary conditions, many exact analytical results are avail-
able. For an arbitrary non-uniform medium or complex boundary conditions, we
usually have to resort to numerical methods. Analytical approximations and per-
turbation methods come into play for cases in between where the problem differs
only a little from one which allows full analytical treatment.

We will consider here three methods relevant in acoustical problems. The first is the
problem of Webster’s horn, an example of a regular perturbation, where the typical
axial length scale is much greater than the transverse length scale. The others are
examples of singular perturbations. The method of multiple scales (related to the
WKB method) describes problems in which in the problem several length scales
act in the same direction, for example a wave propagating through a slowly varying
environment. The method of matched asymptotic expansions is used to analyse
problems in which several approximations, valid in spatially distinct regions, are
necessary.

8.1 Regular Perturbations

8.1.1 Webster’s horn equation

Consider the following problem of low frequency sound waves propagating in a
slowly varying duct or horn [104]. The typical length scale of duct variation is
assumed to be much larger than a diameter, and of the same order of magnitude
as the sound wave length. We introduce the ratio between a typical diameter and
this length scale as the small parameter ε, and write for the duct surface and wave
number k

r = R(X, θ), X = εx, k = εκ. (8.1)

By writing R as a function of slow variable X , rather than x , we have made our
formal assumption of slow variation explicit in a convenient and simple way, since
∂
∂x R = εRX = O(ε).

The crucial step will now be the assumption that the propagating sound wave is
only affected by the geometric variation induced by R. Any initial or entrance
effects are absent or have disappeared. As a result the acoustic field p is a function
of X , rather than x , and its axial gradient scales on ε, as ∂

∂x p = O(ε).
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It is convenient to introduce the following function S and its gradients

S = r − R(X, θ), (8.2)

∇S = εSX ex + Sr er + Sθ
r

eθ = −εRX ex + er − Rθ
r

eθ , (8.3)

∇⊥S = Sr er + Sθ
r

eθ = er − Rθ
r

eθ . (8.4)

At the duct surface S = 0 the gradient ∇S is a vector normal to the surface (see
section A.3), while the transverse gradient ∇⊥S, directed in the plane of a cross
section X = const., is normal to the duct circumference S(X = c, r, θ) = 0.

Inside the duct we have the reduced wave equation (Helmholtz equation)

ε2 pX X +∇2
⊥ p + ε2κ2 p = 0, (8.5)

at the solid wall the boundary condition of vanishing normal velocity

∇ p ·∇S = ε2 pX SX +∇⊥ p ·∇⊥S = 0 at S = 0. (8.6)

This problem is too difficult in general, so we try to utilize in a systematic man-
ner the small parameter ε. Since the perturbation terms are O(ε2), we assume the
asymptotic expansion

p(X, r, θ; ε) = p0(X, r, θ)+ ε2 p1(X, r, θ)+ O(ε4).

After substitution in equation (8.5) and boundary condition (8.6), further expansion
in powers of ε2 and equating like powers of ε, we obtain to leading order a Laplace
equation in (r, θ)

∇2
⊥ p0 = 0 with ∇⊥ p0 ·∇⊥S = 0 at S = 0.

An obvious solution is p0 ≡ 0. Since the solution of the Laplace equation with
boundary conditions in the normal derivative are unique up to a constant (here: a
function of X ), we have

p0 = p0(X).

To obtain an equation for p0 in X we continue with the O(ε2)-equation and corre-
sponding boundary condition

∇2
⊥ p1 + p0 X X + κ2 p0 = 0, ∇⊥ p1 ·∇⊥S = − p0 X SX . (8.7)
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The boundary condition can be rewritten as

∇⊥ p1 ·n⊥ = p0 X RX

|∇⊥S| =
p0 X R RX√
R2 + R2

θ

where n⊥ = ∇⊥S/|∇⊥S| is the transverse unit normal vector. By integrating equa-
tion (8.7) over a cross section A of area A(X), using Gauss’ theorem, and not-
ing that A = ∫ 2π

0
1
2 R2 dθ , and that a circumferential line element is given by

d
 = (R2 + R2
θ )

1/2dθ , we obtain∫∫
A

∇2
⊥ p1 + p0 X X + κ2 p0 dσ =

∫
∂A

∇⊥ p1 ·n⊥ d
 + A( p0 X X + κ2 p0) =

p0 X

2π∫
0

R RX dθ + A( p0 X X + κ2 p0) = AX p0 X + A( p0 X X + κ2 p0) = 0.

Finally, we have obtained for the leading order field p0 the Webster horn equation
[9, 46, 129, 158, 192, 193, 219], which is, for convenience written in the original
variables x and k, given by

1

A

d

dx

(
A

d

dx
p0

)
+ k2 p0 = 0. (8.8)

By introducing A = D2 and φ = Dp0, the equation may be transformed into

φ′′ +
(

k2 − D′′

D

)
φ = 0. (8.9)

This can be solved analytically for certain families of cross sectional shapes A. For
example, the term D′′/D becomes a constant if

D = a emx +b e−mx ,

(parameterized by a, b, and m), and the equation (8.8) simplifies to

φ′′ + (k2 − m2)φ = 0

which can solved by elementary methods. In the special case m → 0 such that
a = 1

2(A0 + A1/m) and b = 1
2 (A0− A1/m), the shape reduces to the conical horn

A = (A0 + A1x)2. For b = 0 we have the exponential horn, and if b = a the
catenoidal horn.

The parameter m is clearly most important since it determines whether the wave is
propagating (m < k) or cut-off (m > k).
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8.2 Multiple scales

Introduction

By means of the method of multiple scales we will consider problems typically
of waves propagating in a slowly varying but otherwise infinite medium (ray
acoustics), or waves propagating in a slowly varying duct.

In both cases there is a small parameter in the problem which is the corner stone of
the approximation. This small parameter is the ratio between a typical wave length
and the length scale over which the medium or duct varies considerably (say, order
1).

Intuitively, it is clear that over a short distance (a few wave lengths) the wave only
sees a constant medium or geometry, and will propagate approximately as in the
constant case, but over larger distances it will somehow have to change its shape
in accordance with its new environment.

A technique, utilizing this difference between small scale and large scale behaviour
is the method of multiple scales ([141, 10]). As with most approximation methods,
this method has grown out of practice, and works well for certain types of prob-
lems. Typically, the multiple scale method is applicable to problems with on the
one hand a certain global quantity (energy, power) which is conserved or almost
conserved and controls the amplitude, and on the other hand two rapidly interacting
quantities (kinetic and potential energy) controlling the phase.

An illustrative example

We will illustrate the method by considering a damped harmonic oscillator

d2 y

dt2
+ 2ε

dy

dt
+ y = 0 (t ≥ 0), y(0) = 0,

dy(0)

dt
= 1 (8.10)

with 0 < ε � 1. The exact solution is readily found to be

y(t) = sin(
√

1− ε2 t) e−εt /
√

1− ε2 (8.11)

A naive approximation for small ε and fixed t would give

y(t) = sin t − εt sin t + O(ε2) (8.12)

which appears to be not a good approximation for large t for the following reasons:
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1) if t = O(ε−1) the second term is of equal importance as the first term and
nothing is left over of the slow exponential decay;

2) if t = O(ε−2) the phase has an error of O(1) giving an approximation of which
even the sign may be in error.

In the following we shall demonstrate that this type of error occurs also if we con-
struct a straightforward approximate solution directly from equation (8.10). How-
ever, knowing the character of the error, we may then try to avoid them. Suppose
we can expand

y(t; ε) = y0(t)+ εy1(t)+ ε2 y2(t)+ · · · . (8.13)

Substitute in (8.10) and collect equal powers of ε:

O(ε0) : d2 y0

dt2
+ y0 = 0 with y0(0) = 0,

dy0(0)

dt
= 1,

O(ε1) : d2 y1

dt2
+ y1 = −2

dy0

dt
with y1(0) = 0,

dy1(0)

dt
= 0,

then

y0(t) = sin t, y1(t) = −t sin t, etc.

Indeed, the straightforward, Poincaré type, expansion (8.13) that is generated
breaks down for large t , when εt ≥ O(1). As is seen from the structure of the
equations for yn, the quantity yn is excited (by the “source”-terms −2dyn−1/dt)
in its eigenfrequency, resulting in resonance. The algebraically growing terms of
the type tn sin t and tn cos t that are generated are called in this context: secular1

terms.

Apart from being of limited validity, the expansion reveals nothing of the real struc-
ture of the solution: a slowly decaying amplitude and a frequency slightly different
from 1. For certain classes of problems it is therefore advantageous to incorporate
this structure explicitly in the approximation.

Introduce the slow time scale

T = εt (8.14)

and identify the solution y with a suitably chosen other function Y that depends on
both variables t and T :

y(t; ε) = Y (t, T ; ε). (8.15)

1From astronomical applications where these terms occurred for the first time in this type of
perturbation series: secular = occurring once in a century; saeculum = generation.
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242 8 Approximation methods

The underlying idea is the following. There are, of course, infinitely many func-
tions Y (t, T ; ε) that are equal to y(t, ε) along the line T = εt in (t, T )-space.
So we have now some freedom to prescribe additional conditions. With the un-
welcome appearance of secular terms in mind it is natural to think of conditions,
chosen such that no secular terms occur when we construct an approximation.

Since the time derivatives of y turn into partial derivatives of Y

dy

dt
= ∂Y

∂t
+ ε ∂Y

∂T
, (8.16)

equation (8.10) becomes for Y

∂2Y

∂t2
+ Y + 2ε

(∂Y

∂t
+ ∂2Y

∂t∂T

)
+ ε2

(∂2Y

∂T 2
+ 2

∂Y

∂T

)
= 0. (8.17)

Assume the expansion

Y (t, T ; ε) = Y0(t, T )+ εY1(t, T )+ ε2Y2(t, T )+ · · · (8.18)

and substitute this into equation (8.17) to obtain to leading orders

∂2Y0

∂t2
+ Y0 = 0,

∂2Y1

∂t2
+ Y1 = −2

∂Y0

∂t
− 2

∂2Y0

∂t∂T
,

with initial conditions

Y0(0, 0) = 0,
∂

∂t
Y0(0, 0) = 1,

Y1(0, 0) = 0,
∂

∂t
Y1(0, 0) = − ∂

∂T
Y0(0, 0).

The solution for Y0 is easily found to be

Y0(t, T ) = A0(T ) sin t with A0(0) = 1, (8.19)

which gives a right-hand side for the Y1-equation of

−2
(

A0 + ∂A0

∂T

)
cos t.

No secular terms occur (no resonance between Y1 and Y0) if this term vanishes:

A0 + ∂A0

∂T
= 0 −→ A0 = e−T . (8.20)
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Note (this is typical), that we determine Y0 fully only on the level of Y1, however,
without having to solve Y1 itself.

The present approach is by and large the multiple scale technique in its simplest
form. Variations on this theme are sometimes necessary. For example, we have not
completely got rid of secular terms. On a longer time scale (t = O(ε−2)) we have
in Y2 again resonance because of the “source”: e−T sin t , yielding terms O(ε2t).
We see that a second time scale T2 = ε2t is necessary.

Sometimes, the occurrence of higher order time scales is really an artefact of the
fast variable being slowly varying due to external effects, like a slowly varying
problem parameter. In this case the fast variable is to be strained locally by a suit-
able strain function in the following way

t̃ = 1

ε

∫ εt

ω(τ ; ε) dτ. (8.21)

(The need for the 1/ε-factor is immediately clear if we observe that t̃ = ε−1ωεt =
ωt for a constant ω = O(1).) For linear wave-type problems we may anticipate the
structure of the solution and assume the WKB hypothesis (see [10, 70])

y(t; ε) = A(T ; ε) eiε−1
∫ T

0 ω(τ ;ε) dτ . (8.22)

We have
∂y

∂t
=
(

iωA + ε ∂A

∂T

)
eiε−1

∫ T
0 ω dτ

∂2y

∂t2
=
(
−ω2 A + 2iεω

∂A

∂T
+ iε

∂ω

∂T
A + ε2 ∂

2 A

∂T 2

)
eiε−1

∫ T
0 ω dτ

so that substitution in (8.10) and suppressing the exponential factor yields

(1− ω2)A + iε
(

2ω
∂A

∂T
+ ∂ω
∂T

A + 2ωA
)
+ ε2

(∂2 A

∂T 2
+ 2

∂A

∂T

)
= 0.

Note that the secular terms are now not explicitly suppressed. The necessary ad-
ditional condition is here that the solution of the present type exists (assumption
8.22), and that each higher order correction is no more secular than its predecessor.
With some luck and ingenuity this is just sufficient to determine A and ω. In gen-
eral, this is indeed not completely straightforward. So much freedom may be left
that ambiguities can result.

Finally, the solution is found as the following expansion

A(T ; ε) = A0(T )+ εA1(T )+ ε2 A2(T )+ · · ·
ω(T ; ε) = ω0(T )+ ε2ω2(T )+ · · · .

(8.23)

RienstraHirschberg 19 July 2006 20:00



244 8 Approximation methods

Note that ω1 may be set to zero since the factor exp(i
∫ T

0 ω1(τ ) dτ) may be incor-
porated in A. Substitute and collect equal powers of ε:

O(ε0) : (1− ω2
0)A0 = 0 → ω0 = 1,

O(ε1) : ∂A0

∂T
+ A0 = 0 → A0 = e−T ,

O(ε2) : 2i
(∂A1

∂T
+ A1

)
= (1+ 2ω2) e−T → ω2 = − 1

2 , A1 = 0.

The solution that emerges is indeed consistent with the exact solution.

8.3 Helmholtz resonator with non-linear dissipation

An interesting application of the multiple scale technique is the Helmholtz res-
onator, as discussed before (5.34), but now without linearization (section 5.2.4). In
this way we will be able to investigate the small non-linear terms that will be seen
to represent a small damping.

First we have to describe the model in a bit more detail. The oscillating internal
pressure sucks and blows the flow inward and outward through the exit, with a jet
formed respectively inside and outside the resonator. For a low enough frequency
the flow may be considered quasi-stationary, except in the transitional phase (which
we will ignore) when the flow turns its direction and the jet isn’t fully developed
yet. Two points inside and outside may now be connected by Bernoulli’s equation

ρ0
dϕin

dt
+ 1

2ρ0u2
in + pin = ρ0

dϕex

dt
+ 1

2ρ0u2
ex + pex. (5.34)

If the exit is small enough compared to the volume V , and the volume is small com-
pared to a typical wave length (i.e. compact), the internal density ρin is practically
uniform, and therefore related to the neck flow velocity un by

V
dρin

dt
= −ρ0un Sn. (5.41)

When the internal pressure is high and the flow is blown outward, we may neglect
the internal velocity uin. Furthermore, the neck velocity un is effectively equivalent
to the outside velocity uex. On the other hand, when the internal pressure is low, the
velocity uex outside the resonator may now be neglected, while at the same time
the neck velocity is equivalent to uin.
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8.3 Helmholtz resonator with non-linear dissipation 245

For simplicity we assume the effect of in- and outflow to be symmetric, and we
introduce a length 
, equal to the neck length plus any necessary end correction,
that relates the potential difference to the neck velocity:

ϕex − ϕin =
∫ ex

in
u·dx = 
un.

Following the same lines as for equation (5.43), we arrive at


V

Snc2
0

d2 pin

dt2
+ V 2

2ρ0c4
0 S2

n

dpin

dt

∣∣∣∣dpin

dt

∣∣∣∣+ pin = pex. (8.24)

As we will only consider the response to a stepwise change of external pressure,
we will assume pex = 0, and prescribe a (small) pin at t=0.

For a proper analysis it is most clarifying to rewrite the equation into non-dimen-
sional variables. For this we need an inherent timescale and pressure. For vanishing
amplitudes the equation describes a harmonic oscillator, so its period (c2

0 Sn/
V )1/2

is the obvious timescale of the nonlinear problem. By dividing the damping term by
the acceleration term we find the pressure level 2ρ0c2

0
Sn/V at which the damping
would be just as large as the other terms. So for a pressure that is a small fraction of
this level we have a problem with only little damping. So we make dimensionless

t =
(

V

c2
0 Sn

) 1
2

τ, pin = 2ερ0c2
0

Sn

V
y where 0 < ε � 1, (8.25)

to obtain

d2 y

dτ 2
+ εdy

dτ

∣∣∣∣dy

dτ

∣∣∣∣+ y = 0, with y(0) = 1,
dy(0)

dτ
= 0. (8.26)

By comparing the acceleration y′′ with the damping εy′|y′| it may be inferred that
on a timescale ετ the influence of the damping is O(1). So we conjecture a slow
timescale ετ , and split up the time dependence in two by introducing the slow
timescale T and the dependent variable Y

T = ετ, y(τ ; ε) = Y (t, T ; ε), dy

dτ
= ∂Y

∂τ
+ ε ∂Y

∂T
,

and obtain for equation (8.26)

∂2Y

∂τ 2
+ Y + ε

(
2
∂2Y

∂τT
+ ∂Y

∂τ

∣∣∣∣∂Y

∂τ

∣∣∣∣)+ O(ε2) = 0 (8.27)

Y (0, 0; ε) = 0,
( ∂
∂τ
+ ε ∂

∂T

)
Y (0, 0; ε) = 0.
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The error of O(ε2) results from the approximation ∂
∂τ

Y + ε ∂
∂T Y � ∂

∂τ
Y , and is of

course only valid outside a small neighbourhood of the points where ∂
∂τ

Y = 0. We
expand

Y (t, T ; ε) = Y0(t, T )+ εY1(t, T )+ O(ε2)

and find for the leading order

∂2Y0

∂τ 2
+ Y0 = 0, with Y0(0, 0) = 1,

∂

∂τ
Y0(0, 0) = 0 (8.28)

with solution

Y0 = A0(T ) cos(τ −�0(T )), where A0(0) = 1, �0(0) = 0.

For the first order we have the equation

∂2Y1

∂τ 2
+ Y1 = −2

∂2Y0

∂τT
− ∂Y0

∂τ

∣∣∣∣∂Y0

∂τ

∣∣∣∣
= 2

dA0

dT
sin(τ −�0)− A0

d�0

dT
cos(τ −�0)

+ A2
0 sin(τ −�0)| sin(τ −�0)|

(8.29)

with corresponding initial conditions. The secular terms are suppressed if the first
harmonics of the right-hand side cancel. For this we use the Fourier series expan-
sion (section C.3)

sin τ | sin τ | = − 8

π

∞∑
n=0

sin(2n + 1)τ

(2n − 1)(2n + 1)(2n + 3)
(8.30)

and we obtain the equations

2
dA0

dT
+ 8

3π
A2

0 = 0 and
d�0

dT
= 0 (8.31)

with solution �0 = 0 and

A0(T ) = 1

1+ 4
3π T

. (8.32)

All together we have finally:

pin � 2ερ0c2
0

Sn

V

cos τ

1+ 4
3π ετ

, with τ =
(

c2
0 Sn


V

) 1
2

t. (8.33)

This approximation happens to be quite good. Comparison with a numerically ob-
tained “exact” solution shows a relative error in the amplitude of less then 2 · 10−4

for ε = 0.1.
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8.4 Slowly varying ducts

Consider a hard-walled circular cylindrical duct with a slowly varying diameter
(c.f. [177, 175, 181, 142, 26, 180, 151]), described in polar coordinates (x, r, θ) as

r = a(εx) (8.34)

with ε a dimensionless small parameter. In this duct we have an acoustic medium
with constant mean pressure and a slowly varying sound speed c0 = c0(εx) (for
simplicity no variation in r and θ is assumed). Sound waves of circular frequency
ω are described by a variant of the Helmholtz equation

∇·( 1

k2
∇ p

)
+ p = 0 (8.35)

where k = k(εx) = ω/c0(εx), with boundary condition a vanishing normal veloc-
ity component at the wall, so

n·∇ p = 0 at r = a(εx). (8.36)

Since (section A.3)

n ∝ ∇
(

r − a(εx)
)
= er − εa′(εx)ex,

(where a′(z) = da(z)/dz) this is

∂p

∂r
− εa′(εx)∂p

∂x
= 0 at r = a(εx). (8.37)

We know that for constant a and constant k the general solution can be built up
from modes of the following type (chapter 7)

p = AJm(αmµr) e−imθ−ikmµx , (8.38)

αmµ = j ′mµ/a,

k2
mµ = k2 − α2

mµ, Re(kmµ) ≥ 0, Im(kmµ) ≤ 0,

and we assume for the present problem, following the previous section, that there
are solutions close to these modes. We introduce the slow variable

X = εx
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so that k = k(X), and we seek a solution of slowly varying modal type:

p = A(X, r; ε) e−imθ e−iε−1
∫ X

0 γ (ξ ;ε) dξ (8.39)

Since

∇·( 1

k2
∇ p

)
= ∂

∂x

( 1

k2

∂p

∂x

)
+ 1

k2

(∂2 p

∂r2
+ 1

r

∂p

∂r
+ 1

r2

∂2 p

∂θ2

)
∂p

∂x
=
(
−iγ A + ε ∂A

∂X

)
exp

(
· · ·

)
∂2 p

∂x2
=
(
−γ 2 A − 2iεγ

∂A

∂X
− iε

∂γ

∂X
A + ε2 ∂

2 A

∂X2

)
exp

(
· · ·

)
we have for (8.35) after multiplication with k2:[

−γ 2 A − 2iεγ
∂A

∂X
− iε

∂γ

∂X
A + ε2 ∂

2 A

∂X2
− 2ε

1

k

∂k

∂X

(
−iγ A + ε ∂A

∂x

)
+∂

2 A

∂r2
+ 1

r

∂A

∂r
− m2

r2
A + k2 A

]
exp

(
· · ·

)
= 0.

After suppressing the exponential factor, this is up to order O(ε)

L(A) = iε
k2

A

∂

∂X

(γ A2

k2

)
,

∂A

∂r
+ iε

∂a

∂X
γ A = 0 at r = a(X),

(8.40)

where we introduced for short the Bessel-type operator (see Appendix D)

L(A) = ∂
2 A

∂r2
+ 1

r

∂A

∂r
+
(

k2 − γ 2 − m2

r2

)
A

and rewrote the right-hand side in a form convenient later. Expand

A(X, r; ε) = A0(X, r)+ εA1(X, r)+ O(ε2)

γ (X; ε) = γ0(X)+ O(ε2)
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substitute in (8.40), and collect like powers of ε.

O(1) : L(A0) = 0 (8.41)

∂A0

∂r
= 0 at r = a(X),

O(ε) : L(A1) = i
k2

A0

∂

∂X

(γ0 A2
0

k2

)
(8.42)

∂A1

∂r
= −i

∂a

∂X
γ0 A0 at r = a(X).

Since variable X plays no other rôle in (8.41) than that of a parameter, we have for
A0 the “almost-mode”

A0(X, r) = P0(X)Jm(α(X)r),

α(X) = j ′mµ/a(X), (8.43)

γ 2
0 (X) = k2(X)− α2(X), Re(γ0) ≥ 0, Im(γ0) ≤ 0,

The amplitude P0 is still undetermined, and follows from a solvability condition for
A1. As before, amplitude P0 is determined at the level of A1, without A1 necessarily
being known.

Multiply left- and right-hand side of (8.42) with r A0/k2 and integrate to r from 0
to a(X). For the left-hand side we utilize the self-adjointness of L.∫ a

0

r A0

k2
L(A1) dr = 1

k2

∫ a

0
r A0L(A1)− r A1L(A0) dr

= 1

k2

[
r A0

∂A1

∂r
− r A1

∂A0

∂r

]a

0

= −i
γ0a

k2

∂a

∂X
A2

0.

For the right-hand side we apply Leibnitz’s rule

i
∫ a

0

∂

∂X

(γ0 A2
0

k2

)
r dr = i

d

dX

∫ a

0

rγ0 A2
0

k2
dr − i

γ0a

k2

∂a

∂X
A2

0.
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As a result∫ a

0

rγ0 A2
0

k2
dr =

[
γ0

2k2
P2

0

(
r2 − m2

α2

)
Jm(αr)2

]a

0

= γ0 P2
0

2k2
a2
(

1− m2

j ′mµ2
)

Jm( j ′mµ)
2 = constant

or:

P0(X) = const.
k(X)

a(X)
√
γ0(X)

= const.
k(X)α(X)√
γ0(X)

(8.44)

It is not accidental that the above integral
∫ a

0 (rγ0 A2
0/k2) dr is constant. The trans-

mitted power of p is to leading order

P =
∫ 2π

0

∫ a

0

1
2 Re(pu∗)r drdθ = π

ωρ0

∫ a

0
Im

(
p ∂
∂x p∗

)
r dr

= π

ωρ0
Re(γ0) e2ε−1

∫ X
0 Im(γ0) dξ

∫ a

0
|A0|2r dr. (8.45)

This is for propagating modes (γ0 real) constant:

P = π

ωρ0
γ0|P0|2 1

2 a2
(

1− m2

j ′mµ2
)

Jm( j ′mµ)
2

= const.
γ0

ρ0

k2

a2γ0
a2 = const.

1

ρ0c2
0

= constant

since ρ0c2
0 is, apart from a factor, equal to the constant mean pressure.

8.5 Reflection at an isolated turning point

An important property of expression (8.44) for P0 is that it becomes invalid when
γ0 = 0. So when the medium and diameter vary in such a way that at some point
X = X0 wave number γ0 vanishes, the present method breaks down [178, 149,
150]. In a small interval around X0 the mode does not vary slowly and locally a
different approximation is necessary.
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X0

Figure 8.1 Turning point X0, where a mode changes from cut-on to cut-off.

When γ 2
0 changes sign, and γ0 changes from real into imaginary, the mode is split

up into a cut-on reflected part and a cut-off transmitted part. If X0 is isolated, such
that there are no interfering neighbouring points of vanishing γ0, it is clear that
no power is transmitted beyond X0 (Re(γ0) = 0 in (8.45)), and the wave has to
reflect at X0. Therefore, a point where wave number γ0 vanishes is called a “turning
point”.

Asymptotically, a turning point region is a boundary layer and the appropriate
analysis is that of matched asymptotic analysis (section 8.8), in the context of the
WKB method (see [10, 70]). However, since the physics of the subject is most rel-
evant in this section on slowly varying ducts, we will present the pertaining results
here2.

Assume at X = X0 a transition from cut-on to cut-off, so ∂
∂X γ

2
0 < 0 or

c′0(X0)

c0(X0)
− a′(X0)

a(X0)
> 0, or α′(X0)− k ′(X0) > 0.

Consider an incident, reflected and transmitted wave of the type found above (equa-
tions 8.39,8.43,8.44). So in X < X0, where γ0 is real positive, we have the incident
and reflected waves

p(x, r, θ) = k(X)α(X)√
γ0(X)

Jm(α(X)r) e−imθ
[
e−iε−1

∫ X
X0
γ0(X ′) dX ′

+R eiε−1∫ X
X0
γ0(X ′) dX ′

]
(8.46)

with reflection coefficient R to be determined. In X > X0, where γ0 is imaginary

2As is explained in section 8.8, the steps in the process of determining the boundary layer thick-
ness and equations, and finally the matching, are very much coupled, and usually too lengthy to
present in detail. Therefore, to keep the present example concise, we will present the results with a
limited amount of explanation.
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negative, we have the transmitted wave

p(x, r, θ) = T
k(X)α(X)√
γ0(X)

Jm(α(X)r) e−imθ e−iε−1
∫ X

X0
γ0(X ′) dX ′

. (8.47)

with transmission coefficient T to be determined, while
√
γ0 = e− 1

4π i√|γ0| will
be taken.

This set of approximate solutions of equation (8.35), valid outside the turning point
region, constitute the outer solution. Inside the turning point region this approxi-
mation breaks down. The approximation is invalid here, because neglected terms of
equation (8.35) are now dominant, and another approximate equation is to be used.
This will give us the inner or boundary layer solution. To determine the unknown
constants (here: R and T ), inner and outer solution are asymptotically matched.

For the matching it is necessary to determine the asymptotic behaviour of the outer
solution in the limit X → X0, and the boundary layer thickness (i.e. the appropriate
local coordinate).

From the limiting behaviour of the outer solution in the turning point region (see
below), we can estimate the order of magnitude of the solution. From a balance of
terms in the differential equation (8.35) it transpires that the turning point boundary
layer is of thickness X − X0 = O(ε2/3), leading to a boundary layer variable ξ
given by

X = X0 + ε2/3ξ.

Since for ε→ 0

γ 2
0 (X) = γ 2

0 (X0 + ε2/3ξ) = −2ε2/3k0(α
′
0 − k ′0)ξ + O(ε4/3ξ 2),

where k0 = k(X0), k ′0 = k ′(X0), etc., we have

1

ε

∫ X

X0

γ0(X
′) dX ′ =

{
− 2

3 |ξ̄ |3/2 = −ζ, if ξ < 0

−i 2
3 ξ̄

3/2 = −iζ, if ξ > 0

where we introduced

ξ̄ = {2k0(α
′
0 − k ′0)}1/3ξ and ζ = 2

3 |ξ̄ |3/2.
The limiting behaviour for X ↑ X0 is now given by

p � k0 α0

{2εk0(α
′
0 − k ′0)}1/6 |ξ̄ |1/4

Jm(α0r) e−imθ
(

eiζ +R e−iζ
)
, (8.48)
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while it is for X ↓ X0 given by

p � T
e

1
4π i k0 α0

{2εk0(α
′
0 − k ′0)}1/6 ξ̄ 1/4

Jm(α0r) e−imθ e−ζ . (8.49)

Since the boundary layer is relatively thin, also compared to the radial coordinate,
the behaviour of the incident mode remains rather unaffected in radial direction,
and we can assume in the turning point region

p(x, r, θ) = Jm(α(X)r)ψ(ξ) e−imθ .

From the properties of the Bessel equation (D.1), we have

∂2 p

∂r2
+ 1

r

∂p

∂r
+ 1

r2

∂2 p

∂θ2
+ k2 p = γ 2

0 p = O(ε2/3)p.

Hence, equation (8.35) yields

k2∇·( 1

k2
∇ p

)
+ k2 p � ε2/3 ∂

2 p

∂ξ 2
+ γ 2

0 p =

ε2/3 Jm(α(X)r) e−imθ
{∂2ψ

∂ξ 2
− 2k0(α

′
0 − k ′0)ξψ

}
= 0

which is, written in variable ξ̄ , equivalent to Airy’s equation (D.79)

∂2ψ

∂ξ̄ 2
− ξ̄ψ = 0.

This has the general solution (see figure 8.2)

ψ(ξ) = a Ai(ξ̄ )+ b Bi(ξ̄ ),

where a and b, parallel with R and T , are now determined from matching. Using
the asymptotic expressions (D.80,D.81) for Airy functions, we find that for ξ̄ large
with 1� ξ̄ � ε−2/3, equation (8.49) matches the inner solution if

a

2
√
πξ̄ 1/4

e−ζ + b√
πξ̄ 1/4

eζ ∼ T
e

1
4π i k0 α0

{2εk0(α
′
0 − k ′0)}1/6 ξ̄ 1/4

e−ζ .

Since eζ →∞, we can only have b = 0, and thus

a = 2
√
π T k0 α0 e

1
4π i

{2εk0(α
′
0 − k ′0)}1/6

.

RienstraHirschberg 19 July 2006 20:00



254 8 Approximation methods

−10 −8 −6 −4 −2 0 2 4
−0.5

0

0.5

1

1.5

2

2.5

 Ai(x) 

 Bi(x) 

Figure 8.2 Airy functions

If−ξ̄ is large with 1� −ξ̄ � ε−2/3 we use the asymptotic expression (D.80), and
find that equation (8.48) matches the inner solution if

a√
π |ξ̄ |1/4 cos(ζ − 1

4π) ∼
k0 α0

{2εk0(α
′
0 − k ′0)}1/6 |ξ̄ |1/4

(eiζ +R e−iζ ),

or

T e
1
4π i(eiζ− 1

4π i + e−iζ+ 1
4π i) = T eiζ +T i e−iζ ∼ eiζ +R e−iζ .

So, finally, we have

T = 1, R = i . (8.50)

8.6 Ray acoustics in temperature gradient

When a sound wave propagates in free space through a medium that varies on a
much larger scale than the typical wave length (typically: temperature gradients, or
wind with shear), the same ideas of multiple scales may be applied. In contrast to
the duct, where the wave is confined by the duct walls, the waves may now freely
refract and follow curved paths. These paths are called rays. This means that rays
are not localized “beams” of sound, but only the tangents of the intensity vectors
of a sound field.

Consider an infinite 3D medium with varying temperature (typical length scale L)
but otherwise with a constant mean pressure, so that we have again equation (8.35),
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but now k varying more generally3:

∇·( 1

k2
∇ p

)
+ p = 0 (8.51)

k = k(εx) = ω

c0(εx)
(8.52)

for a time harmonic sound field p ∝ eiωt . The small parameter ε relates the typical
wave length λ ∼ 2πc0/ω to L , so ε ∼ λ/L . Assuming the field to be locally plane
we try an approximate solution having the form of a plane wave but with slowly
varying (real) amplitude A = A(X; ε) and phase τ = τ(X; ε)

p(x) = A e−iωτ/ε (8.53)

where X = εx the slow variable. The surfaces

τ(X) = εt (8.54)

describe the propagating wave front. Note that the vector field ∇τ is normal to the
surfaces τ = constant (section A.3). Define the operator

∇ =
( ∂
∂X
,
∂

∂Y
,
∂

∂Z

)
so that ∇ = ε∇. Substitute (8.53) in (8.51):

∇ p =
(
ε∇A − iωA∇τ

)
e−iωτ/ε, (8.55a)

∇2 p =
(
ε2∇2

A − 2iεω∇A·∇τ − iεωA∇2
τ − ω2 A|∇τ |2

)
e−iωτ/ε,

(8.55b)

to obtain

(k2 − ω2|∇τ |2)A − iεω
k2

A
∇·( A2∇τ

k2

)
+ ε2k2∇·( 1

k2
∇A

)
= 0. (8.56)

Expand

A(X; ε) = A0(X)+ εA1(X)+ O(ε2)

τ (X; ε) = τ0(X)+ O(ε2)

3It should be noted that our point of view here is to think of the problem as a wave in a slowly
varying medium, i.e. to consider L “large”. Another, equally valid point of view is to think of a
medium with a high frequency wave, i.e. to scale the problem on L and to consider the wave length
“short” or the frequency “high”.
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and collect like powers in (8.56). We find to leading order τ0 and A0:

|∇τ0|2 = c−2
0 (8.57)

∇·(c2
0 A2

0∇τ0
) = 0. (8.58)

Equation (8.57) is the eikonal equation, which determines the wave fronts and
the ray paths. Equation (8.58) is called the transport equation and describes the
conservation of wave action, which is here equivalent to conservation of energy
[110, 222]. It relates the amplitude variation to diverging or converging rays.

The eikonal equation is a nonlinear first order partial differential equation, of hy-
perbolic type, which can always be reduced to an ordinary differential equation
along characteristics [27]. This is summarized by the following theorem ([222,
p.65]).

Theorem 8.1 (General solution of 1st order PDE)
The solution of the first-order partial differential equation

H (q, τ, x) = 0, q = ∇τ,
with consistent boundary conditions on a surface S, is given by the system of ordi-
nary differential equations4

dχ

dλ
= ∇q H,

dτ

dλ
= q ·∇q H,

dq
dλ
= −q

∂H

∂τ
−∇x H,

where the curve x = χ(λ), with parameter λ, is called a characteristic.

A characteristic forms a path along which the information of the boundary values
on S is transferred to the point of observation. In general the characteristic de-
pends on the solution, and both characteristic and solution are to be determined
together. If more than one point of a characteristic is part of S, the boundary con-
ditions are not independent, and in general inconsistent. If more than one charac-
teristic passes through a point, the solution is not unique.

Note that since λ is only an auxiliary variable, other equivalent forms of the solu-
tion q(x) exist.

The characteristics are here identical to the rays. By rewriting equation (8.57) as
1
2εc

2
0|∇τ0|2 − 1

2ε = 0 and using theorem (8.1) (p.256), the characteristic variable
is just the time t , and we have the expected

τ0(X(t)) = εt
4∇q H denotes the gradient in q: ( ∂H

∂qi
); similar for ∇x H .
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along a ray X = X(t) given by

dX
dt
= εc2

0∇τ0 = εc0
∇τ0

|∇τ0|
. (8.59)

d

dt
∇τ0 = −ε∇c0

c0
. (8.60)

Equations (8.59) and (8.60) are called: the “ray-tracing equations”.

Once we know the rays, the transport equation (8.58) can be solved as follows.
Consider a small area S1 of the surface τ0 = C1, and connect the points of S1

via the rays (following the vector field ∇τ0) with the corresponding area S2 on the
surface τ0 = C2. Then the volume of rays connecting S1 and S2 is called a ray-tube.
Since ∇τ0 = 0 along its surface, except for S1 and S2 where it is just ∇τ0 = c−1

0 n,
we have∫

tube
∇·(c2

0 A2
0∇τ0

)
dX =

∫
S2

c0 A2
0 ds −

∫
S1

c0 A2
0 ds = 0.

If we associate to a ray X(t) a ray-tube with cross section S = S(X), the amplitude
varies according to the relation

A2
0(X)c0(X)S(X) = constant along a ray tube. (8.61)

From equation (8.60) it can be inferred that a ray (with direction ∇τ0) bends away
from regions with higher sound speed. This explains why sound is carried far along
a cold surface like water or snow, and not at all along for example hot sand. When
the surface is cold there is a positive soundspeed gradient which causes the sound
waves to bend downwards to the surface. In combination with reflection at the
surface the sound is trapped and tunnels through the layer adjacent to the surface.
When the surface is hot there is a negative soundspeed gradient which causes the
sound to bend upwards and so to disappear into free space 5.

We can make this more explicit when the sound speed varies in only one direction,

5In the north of Mexico, in Chihuahua, there is a desert area called “Zona del Silencio”, a name
that might well refer to this acoustic effect.

RienstraHirschberg 19 July 2006 20:00



258 8 Approximation methods

say c0 = c0(Y ). Then rays in the (X,Y )-plane satisfy

d

dt
X = εc2

0
∂τ0

∂X
(8.62a)

d

dt
Y = εc2

0
∂τ0

∂Y
(8.62b)

d

dt

(∂τ0

∂X

)
= 0 (8.62c)

d

dt

(∂τ0

∂Y

)
= − ε

c0

dc0

dY
. (8.62d)

Since we have from equation (8.62a-8.62c) and (8.57)

dY

dX
= ∂τ0/∂Y

∂τ0/∂X
,

∂τ0

∂X
= constant,

(∂τ0

∂X

)2 +
(∂τ0

∂Y

)2 = 1

c2
0

,

it follows that the angle θ with the vertical satisfies the relation

sin θ

c0
= 1

c0

(( dY

dX

)2 + 1

)− 1
2

= ∂τ0(0)

∂X
= constant (8.63)

which is just Snell’s law. Furthermore, if c0 varies linearly, so that dc0/dY is con-
stant, then dX/dY can be integrated with respect to Y , with the result

c2
0 +

(dc0

dY

)2
(X − X0)

2 =
(∂τ0(0)

∂X

)−2 = constant (8.64)

which corresponds with a circle in the (x, y)-plane. So rays in a linear sound speed
medium follow circular paths.

8.7 Refraction in shear flow

The propagation of sound waves in the atmosphere is greatly affected by wind.
For example, the communication between two people, one downstream and one
upstream, is not symmetric. The one upstream is easier to understand for the one
downstream than the other way around. This is not because the wind “carries the
waves faster”, but it is due to refraction by the wind gradient (the atmospheric
boundary layer). This is seen as follows ([110]).
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U (z)

Figure 8.3 Refraction in shear flow.

Consider the acoustic wave equations (2.49a-2.49d) for sound in an arbitrary mean
flow. We assume the sound field to be time harmonic with a frequency high enough
to adopt a ray approximation. The small parameter is now again ε ∼ c0/ωL , with
L a typical length scale for variations in the mean flow velocity v0. Similar to
the foregoing chapter we introduce the compressed variable X = εx and the ray
approximations

p, ρ, v, s = P(X; ε), R(X; ε), V (X; ε), S(X; ε)× eiωt−iωτ(x;ε)/ε

which are substituted in (2.49a-2.49d), to obtain to leading order

ρ0V (1− v0 ·∇τ) = P∇τ, R(1− v0 ·∇τ) = ρ0V ·∇τ,
S(1− v0 ·∇τ) = 0, P(1− v0 ·∇τ) = c2

0 R(1− v0 ·∇τ).
This yields S = 0, P = c2

0 R and an eikonal equation for the phase function τ :

|∇τ |2 = 1

c2
0

(
1− v0 ·∇τ

)2
. (8.65)

This equation is similar to equation (8.57). By rewriting equation (8.65) as
1
2c2

0|∇τ |2/(1 − v0 ·∇τ) − 1
2 (1 − v0 ·∇τ) = 0 and using theorem (8.1) (p.256),

the characteristic variable is just the time t , and we have

τ(X) = εt
along the ray X = X(t), given by6

dX
dt
= εv0 + εc0

∇τ
|∇τ | , (8.66a)

d

dt
∇τ = −ε∇v0 ·∇τ − ε|∇τ |∇c0. (8.66b)

6 ∇v·∇τ = (∑ j
∂v j
∂xi

∂τ
∂x j
).
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For a simple parallel flow in x-direction, varying only in z (we return for simplicity
to the uncompressed variable x):

v0(x) = (U0(z), 0, 0)

this becomes

d

dt

(∂τ
∂x

)
= d

dt

(∂τ
∂y

)
= 0, (8.67a)

d

dt

(∂τ
∂z

)
= −dU0(z)

dz

(∂τ
∂x

)
. (8.67b)

So, if we start with for example a vertical wave front τ ∝ x , then a positive wind
shear (dU0/dz > 0) will decrease the z-component ∂τ/∂z. In other words, the
rays will bend towards the low wind-speed regions. Propagating with the wind, the
waves bend down and remain near the ground; against the wind they bend up and
disappear in the free space.

8.8 Matched asymptotic expansions

Introduction

Very often it happens that a simplifying limit applied to a more comprehensive
model gives a correct approximation for the main part of the problem, but not
everywhere: the limit is non-uniform. This non-uniformity may be in space, in
time, or in any other variable. For the moment we think of non-uniformity in space.
This non-uniformity may be a small region near a point, say x = 0, or it may be
far away, i.e. for x →∞, but this is of course still a small region near the origin of
1/x , so for the moment we think of a small region.

If this region of non-uniformity is crucial for the problem, for example because
it contains a boundary condition, or a source, we may not be able to utilize the
pursued limit and have to deal with the full problem (at least locally). This, how-
ever, is usually not true. The local nature of the non-uniformity itself gives often
the possibility of another reduction. In such a case we call this a couple of limiting
forms, “inner and outer problems”, and are evidence of the fact that we have ap-
parently physically two connected but different problems as far as the dominating
mechanism is concerned. (Depending on the problem) we now have two simpler
problems, serving as boundary conditions to each other via continuity or matching
conditions.
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Suppose we are interested in the solution of

ε
dy

dx
+ y = sin x, y(0) = 1, x ≥ 0

for small positive ε, and suppose for the moment that we are not able to find an
exact solution. It is natural to try to use the fact that ε is small. For example, from
the structure of the problem, where both the source and the boundary value are
O(1), it is very likely to conclude that y = O(1). If also the derivative y′ is not
very large (which is true for the most, but not, as we will see, everywhere), then a
first approximation is clearly

y0 � sin x .

We could substitute this into the original equation, and find a correction

y1 � sin x − εy′0 = sin x − ε cos x .

We can continue this indefinitely, and hope for a better and better approximation
of the real solution. However, this can not be true: the approximate solution found
this way is completely determined without integration constants, and we cannot
apply anywhere the boundary condition y(0) = 1. In fact, the value at x = 0 that
appears is something like −ε . . . , and quite far away from 1.

What’s happening here? The cause of this all, is the fact that in the neighbourhood
of x = 0, to be exact: for x = O(ε), the solution changes its character over a
very short distance (boundary layer), such that the derivative y′ is now not O(1),
but very large: O(ε−1). Since equation and solution are evidently closely related,
also the equation becomes essentially different, and the above approximation of
the equation is not valid anymore.

The remedy to this problem is that we have to stretch the variables such that the
order of magnitude of the solution is reflected in the rescaling. In general this is far
from obvious, and certainly part of the problem. In the present example it goes as
follows. We write x = εξ and y(x) = Y (ξ), so that

dY

dξ
+ Y = sin(εξ), Y (0) = 1,

Now we may construct another approximation, locally valid for ξ = O(1)

dY0

dξ
+ Y0 � 0, Y0(0) = 1,
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with solution Y0(ξ) = e−ξ . We may continue to construct higher order correc-
tions. Then we will see that for ξ large, respectively x small, this inner solution Y0

smoothly changes into the above outer solution y0 (matching), and together they
form a uniform approximation.

General methodology

In the following we will describe some of the mathematical methodology in more
detail ([141, 10, 44, 104, 34, 70, 101, 95]). We are interested in the limiting be-
haviour for ε ↓ 0 of a sufficiently smooth function  (x; ε) with, say, 0≤x≤1,
0<ε≤ε0.  has a regular asymptotic approximation on [0, 1] if there exists a
gauge-function µ0(ε) and a shape-function  0(x) such that

lim
ε→0

∣∣∣∣ (x; ε)µ0(ε)
− 0(x)

∣∣∣∣ = 0 uniform in x

or:

 (x; ε) = µ0(ε) 0(x)+ o(µ0) (ε→ 0, uniform in x).

A regular asymptotic series expansion, with gauge-functions µn(ε) and shape-
functions  n(x) is defined by induction, and we say

 (x; ε) =
N∑

n=0

µn(ε) n(x)+ o(µN ) (ε→ 0, uniform in x). (8.68)

Note that neither gauge- nor shape-functions are unique. Furthermore, the series is
only asymptotic in ε for fixed N . The limit N →∞ may be meaningless.

The functions that concern us here do not have a regular asymptotic expansion on
the whole interval [0, 1] but say, on any partial interval [A, 1], A> 0, A fixed. We
call this expansion the outer-expansion, valid in the “x = O(1)”-outer region.

 (x; ε) =
N∑

n=0

µn(ε)ϕn(x)+ o(µN ) ε→ 0, x = O(1). (8.69)

The functions do not have a regular expansion on the whole interval because the
limit ε→ 0, x→ 0 is non-uniform and may not be exchanged. There is a gauge-
function δ(ε), with lim

ε→0
δ(ε) = 0, such that in the stretched coordinate

ξ = x

δ(ε)
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the function �(ξ ; ε) =  (δ(ε)ξ ; ε) has a non-trivial regular asymptotic series
expansion on any partial interval ξ ∈ [0, A], A> 0, A fixed. The adjective non-
trivial is essential: the expansion must be “significant”, i.e. different from the
outer-expansion in ϕn rewritten in ξ . For the largest δ(ε) with this property we
call the expansion for � the inner-expansion or boundary layer expansion, the
region ξ = O(1) or x = O(δ) being the boundary layer with thickness δ, and ξ the
boundary layer variable. A boundary layer may be nested and may contain more
boundary layers.

Suppose,  (x; ε) has an outer-expansion

 (x; ε) =
n∑

k=0

µk(ε)ϕk(x)+ o(µn) (8.70)

and a boundary layer x = O(δ) with inner-expansion

�(ξ ; ε) =
m∑

k=0

λk(ε)ψk(ξ)+ o(λm) (8.71)

and suppose that both expansions are complementary, i.e. there is no other bound-
ary layer in between x = O(1) and x = O(δ), then the “overlap-hypothesis” says
that both expansions represent the same function in an intermediate region of over-
lap. This overlap region may be described by a stretched variable x = η(ε)σ , as-
ymptotically in between O(1) and O(δ), so: δ�η� 1. In the overlap region both
expansions match, which means that asymptotically both expansions are equiv-
alent and reduce to the same expressions. A widely used and relatively simple
procedure is Van Dyke’s matchings rule [209]: the outer-expansion, rewritten in
the inner-variable, has a regular series expansion, which is equal to the regular as-
ymptotic expansion of the inner-expansion, rewritten in the outer-variable. Suppose
that

n∑
k=0

µk(ε)ϕk(δξ) =
m∑

k=0

λk(ε)ηk(ξ)+ o(λm) (8.72a)

m∑
k=0

λk(ε)ψk(x/δ) =
n∑

k=0

µk(ε)θk(x)+ o(µn) (8.72b)

then the expansion of ηk back to x

n∑
k=0

λk(ε)ηk(x/δ) =
n∑

k=0

µk(ε)ζk(x)+ o(µn)
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is such that ζk = θk for k = 0, · · · , n.

The idea of matching is very important because it allows one to move smoothly
from one regime into the other. The method of constructing local, but matching,
expansions is therefore called “Matched Asymptotic Expansions” (MAE).

The most important application of this concept of inner- and outer-expansions is
that approximate solutions of certain differential equations can be constructed for
which the limit under a small parameter is apparently non-uniform. Typical ex-
amples in acoustics are small Helmholtz number problems where long waves are
scattered by small objects or are otherwise connected to a small geometrical size.

The main lines of argument for constructing a MAE solution to a differential equa-
tion + boundary conditions are as follows. Suppose  is given by the equation

D( ′, , x; ε) = 0 + boundary conditions, (8.73)

where  ′ = d /dx . Then we try to construct an outer solution by looking for
“non-trivial degenerations” of D under ε → 0, that is, find µ0(ε) and ν0(ε) such
that

lim
ε→0

ν−1
0 (ε)D(µ0ϕ

′
0, µ0ϕ0, x; ε) = D0(ϕ

′
0, ϕ0, x) = 0 (8.74)

has a non-trivial solution ϕ0. A series ϕ = µ0ϕ0 + µ1ϕ1 + · · · is constructed by
repeating the process for D − ν−1

0 D0, etc.

Suppose, the approximation is non-uniform (for example, not all boundary con-
ditions can be satisfied), then we start looking for an inner-expansion if we have
reasons to believe that the non-uniformity is of boundary-layer type. Presence, lo-
cation and size of the boundary layer(s) are now found by the “correspondence
principle”, that is the (heuristic) idea that if  behaves somehow differently in the
boundary layer, the defining equation must also be essentially different. Therefore,
we search for “significant degenerations” or “distinguished limits” of D. These
are degenerations of D under ε→ 0, with scaled x and  , that contain the most
information, and without being contained in other, richer, degenerations.

The next step is then to select from these distinguished limits the one(s) allowing a
solution that matches with the outer solution and satisfies any applicable boundary
condition.
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Symbolically:

find

x0, δ(ε), λ(ε), κ(ε)

with

x = x0 + δξ,  (x; ε) = λ(ε)�(ξ ; ε)
such that

B0(ψ
′
0, ψ0, ξ ) = lim

ε→0
κ−1 D(δ−1λ� ′, λ�, x0 + δξ ; ε)

has the “richest” structure, and there exists a solution of

B0(ψ
′
0, ψ0, ξ ) = 0

satisfying boundary and matching conditions. Again, an asymptotic expansion may
be constructed inductively, by repeating the argument. It is of practical importance
to note that the order estimate λ of  in the boundary layer is often determined a
posteriori by boundary or matching conditions.

Simple example

A simple example to illustrate some of the main arguments is

D(ϕ′, ϕ, x; ε) = εd2ϕ

dx2
+ dϕ

dx
− 2x = 0, ϕ(0) = ϕ(1) = 2. (8.75)

The leading order outer-equation is evidently (with µ0 = ν0 = 1)

D0 = dϕ0

dx
− 2x = 0

with solution

ϕ0 = x2 + A

The integration constant A can be determined by the boundary condition ϕ0(0) = 2
at x = 0 or ϕ0(1) = 2 at x = 1, but not both, so we expect a boundary layer at
either end. By trial and error we find that no solution can be constructed if we
assume a boundary layer at x = 1, so, inferring a boundary layer at x = 0, we
have to use the boundary condition at x = 1 and find

ϕ0 = x2 + 1
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The structure of the equation suggests a correction of O(ε), so we try the expansion

ϕ = ϕ0 + εϕ1 + ε2ϕ2 + · · · .
This results for ϕ1 into the equation

dϕ1

dx
+ d2ϕ0

dx2
= 0, with ϕ1(1) = 0 (the O(ε)-term of the

boundary condition),

which has the solution

ϕ1 = 2− 2x .

Higher orders are straightforward:

dϕn

dx
= 0, with ϕn(1) = 0

leading to solutions ϕn ≡ 0, and we find for the outer expansion

ϕ = x2 + 1+ 2ε(1− x)+ O(εN ). (8.76)

We continue with the inner expansion, and find with x0 = 0, ϕ = λψ , x = δξ
ελ

δ2

d2ψ

dξ 2
+ λ
δ

dψ

dξ
− 2δξ = 0.

Both from the matching (ϕouter→ 1 for x ↓ 0) and from the boundary condition
(ϕ(0) = 2) we have to conclude that ϕinner = O(1) and so λ = 1. Furthermore,
the boundary layer has only a reason for existence if it comprises new effects, not
described by the outer solution. From the correspondence principle we expect that
new effects are only included if (d2ψ/dξ 2) is included. So εδ−2 must be at least
as large as δ−1, the largest of δ−1 and δ. From the principle that we look for the
equation with the richest structure, it must be exactly as large, implying a boundary
layer thickness δ = ε. Thus we have κ = ε−1, and the inner equation

d2ψ

dξ 2
+ dψ

dξ
− 2ε2ξ = 0.

From this equation it would seem that we have a series expansion without the O(ε)-
term, since the equation for this order would be the same as for the leading order.
However, from matching with the outer solution:

ϕouter → 1+ 2ε + ε2(ξ 2 − 2ξ)+ · · · (x = εξ, ξ = O(1))
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we see that an additional O(ε)-term is to be included. So we substitute the series
expansion:

ψ = ψ0 + εψ1 + ε2ψ2 + · · · . (8.77)

It is a simple matter to find

d2ψ0

dξ 2
+ dψ0

dξ
= 0 , ψ0(0) = 2 → ψ0 = 2+ A0(e−ξ −1)

d2ψ1

dξ 2
+ dψ1

dξ
= 0 , ψ1(0) = 0 → ψ1 = A1(e−ξ −1)

d2ψ2

dξ 2
+ dψ2

dξ
= 2ξ, ψ2(0) = 0 → ψ2 = ξ 2 − 2ξ + A2(e−ξ −1)

where constants A0, A1, A2, · · · are to be determined from the matching condition
that outer expansion (8.76) for x→ 0 :

1+ x2 + 2ε − 2εx + · · ·
must be functionally equal to inner expansion (8.77) for ξ→∞:

2− A0 − εA1 + x2 − 2εx − ε2 A2 + · · · .
A full matching is obtained if we choose: A0 = 1, A1 = −2, A2 = 0.

It is important to note that a matching is possible at all! Only a part of the terms
can be matched by selection of the undetermined constants. For example, the co-
efficients of the x and x2 terms are already equal, without free constants. This is
an important consistency check on the found solution, at least as long as no real
proof is available. If no matching appears to be possible, almost certainly one of the
assumptions made with the construction of the solution have to be reconsidered.
Particularly notorious are logarithmic singularities of the outer field, not uncom-
mon in 2D acoustical radiation problems ([104]). Even for such a simple (looking)
problem as that of a plane wave scattered by a static compact sphere a careful ap-
proach is necessary to get the right results ([30]). On the other hand, only in rather
rare cases, probably related to exceptional physical phenomena, no matching cou-
ple of inner and outer solutions is possible at all.

Summarizing: matching of inner- and outer expansion plays an important rôle in
the following ways:

i) it provides information about the sequence of order (gauge) functions {µk}
and {λk} of the expansions;
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ii) it allows us to determine unknown constants of integration;

iii) it provides a check on the consistency of the solution, giving us confidence
in the correctness.

8.9 Duct junction

A very simple problem that can be solved with matched asymptotic expansions is
the reflection and transmission of low-frequency sound waves through a junction
of two ducts with different diameter. The problem will appear to be so simple
that the apparatus of MAE could justifiably be considered as a bit of an overkill.
However, the method is completely analogous in many other duct problems, allows
any extension to higher orders, and is therefore a good illustration.

Consider two straight hard walled ducts with cross section A1 for x < 0, cross
section A2 for x > 0, in some (here rather irrelevant) way joined together at x = 0
(figure 8.4). Apart from a region near this junction, the ducts have a constant cross

A1

A2

x = 0
x < 0

x > 0

incident

reflected
transmitted

Figure 8.4 Duct junction.

section with a wall normal vector nwall independent of the axial position.

A sound wave with potential ϕin = eiωt−ikx is incident from x = −∞. The wave-
length is large compared to the duct diameter:

k
√

A1 = ε � 1. (8.78)

To avoid uninteresting complications, we assume that in terms of ε the ratio A1/A2

is not close to 1 or 0: A1/A2 = O(1), A1 �= A2. Introduce dimensionless variables
X := kx , y := y/

√
A1, z := z/

√
A1. Then for a uniform acoustic medium we
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have for a time harmonic scattered field ϕ

ε2 ∂
2ϕ

∂X2
+ ∂

2ϕ

∂y2
+ ∂

2ϕ

∂z2
+ ε2ϕ = 0 (8.79a)

∇ϕ ·nwall = 0 at the wall. (8.79b)

In the outer region x = (X, y, z) = O(1) we expand in powers of ε (not ε2 as will
be clear in the end)

ϕ(x; ε) = ϕ0(x)+ εϕ1(x)+ ε2ϕ2(x)+ · · · (8.80)

and substitute in (8.79a) to find that all terms are function of the axial coordinate
X only:

O(1) :
∂2ϕ0

∂y2
+ ∂

2ϕ0

∂z2
= 0

∇ϕ0 ·nwall = 0

 −→ ϕ0 = ϕ0(X), (8.81a)

O(ε) :
∂2ϕ1

∂y2
+ ∂

2ϕ1

∂z2
= 0

∇ϕ1 ·nwall = 0

 −→ ϕ1 = ϕ1(X), (8.81b)

O(ε2) :

∂2ϕ2

∂y2
+ ∂

2ϕ2

∂z2
+ ∂

2ϕ0

∂X2
+ ϕ0 = 0

∇ϕ2 ·nwall = 0

 −→
ϕ2 = ϕ2(X),

∂2ϕ0

∂X2
+ ϕ0 = 0.

(8.81c)

This last result is obtained from integration over a cross section A
def== {X =

constant} with surface |A|, and applying Gauss’ theorem∫
A

(∂2ϕ2

∂y2
+ ∂

2ϕ2

∂z2
+∂

2ϕ0

∂X2
+ ϕ0

)
ds

=
∫
∂A
(∇ϕ2 ·nwall) d
 +

(∂2ϕ0

∂X2
+ ϕ0

)
|A| = 0.
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Evidently, this process can be continued and we obtain

ϕ0 =
{

e−iX +R0 eiX (X < 0)

T0 e−iX (X > 0)
(8.82a)

ϕn =
{

Rn eiX (X < 0)

Tn e−iX (X > 0)
(8.82b)

(where n ≥ 1). The region X = O(ε) appears to be a boundary layer, and we
introduce

x = X/ε,

 = ϕ(εx, y, z; ε).

The equation for  becomes

∂2 

∂x2
+ ∂

2 

∂y2
+ ∂

2 

∂z2
+ ε2 = 0 (8.83)

∇ ·nwall = 0 at the wall. (8.84)

but now with matching conditions for x → −∞ and x → +∞, i.e. X ↑ 0 and
X ↓ 0 of the outer solution (8.82a-8.82b):

x →−∞ :  � 1+ R0 + ε(R1 − ix + ix R0)

+ε2(R2 + ix R1 − 1
2 x2 − 1

2 x2 R0)+ · · · ,
x →+∞ :  � T0 + ε(T1 − ixT0)+ ε2(T2 − ixT1 − 1

2 x2T0)+ · · · .

Guided by the behaviour under matching we assume the expansion

 =  0 + ε 1 + ε2 2 · · · ,
then

O(1) : ∇2 0 = 0 −→  0 = constant −→ 1+ R0 = T0 (8.85)

O(ε) : ∇2 1 = 0 −→  1 = not necessarily constant.

In general, the solution  1 is difficult to obtain. However, if we are for the moment
only interested in the global effects on reflection and transmission, we can again
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make use of Gauss’ theorem. Consider a large volume V , reaching from x = x1

large negative, to x = x2 large positive (large in variable x but small in variable X ,
so that we can use the matching conditions). At x = x1 the surface of V consists
of a cross section A1, and at x = x2 a cross section A2. The size of V is denoted
by |V |, the sizes of A1 and A2 by |A1| and |A2|. We integrate over this volume to
obtain: ∫

V
∇2 1 dx = −

∫
A1

∂ 1

∂x
ds +

∫
A2

∂ 1

∂x
ds

= −(−i + i R0)|A1| − iT0|A2| = 0

so that:

1− R0 = T0
|A2|
|A1| (8.86)

which, together with equation (8.85), determines R0 and T0 fully. We continue with
the O(ε2) term:

O(ε2) : ∇2 2 = − 0.

Again, to obtain  2 is difficult in a general situation, but if we follow the same
arguments as for  1 we find∫

V
∇2 2 dx = − 0|V | =

−
∫

A1

∂ 2

∂x
ds +

∫
A2

∂ 2

∂x
ds =

−|A1|(i R1 − x1 − x1 R0)

+|A2|(−iT1 − x2T0) = −T0(x2|A2| − x1|A1| + θ1)

where θ1 denotes the difference, due to obvious details of the junction geometry,
between |V | and the sum of the two duct parts x2|A2| − x1|A1|. The above identity
results into

|A1|R1 + |A2|T1 = −iT0θ1. (8.87)

This process can be continued, at least formally. For each n-th step more and more
information of solution  n−2 is needed. For example, the next step for  3 gives a
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relation for R1 and T1, and R2 and T2, in terms of the integral (check yourself!)

θ2 =
∫

V
 1 dx −

∫ 0

x1

(R1 − ix + i R0x) dx −
∫ x2

0
(T1 − iT0x) dx

= i|A1|R2 + i|A2|T2.

Note that the corrections R1 and T1 are imaginary and therefore appear as a phase
shift in the reflected and transmitted (outer-) waves. So the reflection and transmis-
sion amplitudes (i.e. absolute value) are given by R0 and T0 up to O(ε2).

8.10 Co-rotating line-vortices

In an inviscid infinite 2D medium a stationary line vortex produces a time-indepen-
dent velocity and pressure field. Two of such vortices, however, move in each oth-
ers velocity field. Two equally strong and equally orientated vortices rotate around
a common centre, and produce a fluctuating velocity and pressure field (for a fixed
observer).

−�

2�

−�

Figure 8.5 Three co-rotating vortices.

If the velocities are relatively low, this
field will be practically incompressible. A
small fraction of the energy, however, will
radiate away as sound [132, 29].

For a physically consistent problem (it
is not possible in an inviscid medium to
change the total amount of circulation)
we position at the common centre a third
vortex with a double but opposite vortex
strength. By symmetry this vortex will not
move but of course will contribute to the
rotating motion of the other two.

Inviscid compressible irrotational flow
depending on x = r cos θ , y = r sin θ

RienstraHirschberg 19 July 2006 20:00



8.10 Co-rotating line-vortices 273

and t is described by

∂ρ

∂t
+∇ϕ ·∇ρ + ρ∇2ϕ = 0, (8.88a)

ρ∇
(∂ϕ
∂t
+ 1

2

∣∣∇ϕ∣∣2)+∇ p = 0, (8.88b)

p

p0
=
( ρ
ρ0

)γ
, c2 = dp

dρ
= γ p

ρ
, (8.88c)

with density ρ, pressure p, velocity potential ϕ, sound speed c and gas constant γ .
Introduce the auxiliary quantity (c.f. (1.31b))

Q = ∂ϕ
∂t
+ 1

2

∣∣∇ϕ∣∣2 (8.89)

then

(γ − 1)Q + c2 = c2
0 (constant) (8.90)

where under the assumption that ϕ→ 0 for r→∞ the constant c0 is the far field
sound speed. Hence

∂Q

∂t
+ c2

ρ

∂ρ

∂t
= 0, ∇Q + c2

ρ
∇ρ = 0

and so (
c2

0 − (γ − 1)Q
)
∇2ϕ = ∂Q

∂t
+∇ϕ ·∇Q. (8.91)

We will consider two vortices with vortex strength −�, positioned opposite to
each other on the circle r = a, and a vortex of strength 2� at the origin r = 0.
Their motion around each other will be incompressible as follows. Typical induced
velocities are of the order of �/a, and we assume this to be small enough compared
to the sound speed for locally incompressible flow:

ε = �

ac0
� 1. (8.92)

Introduce dimensionless variables (where we keep for convenience the same nota-
tion):

t := t�/a2, x := x/a, y := y/a, ϕ := ϕ/�, Q := Qa2/�2.
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Equation (8.91) is then in dimensionless form(
1− (γ − 1)ε2 Q

)
∇2ϕ = ε2

(∂Q

∂t
+∇ϕ ·∇Q

)
. (8.93)

In the inner region r = O(1), we have to leading order the Laplace equation for
incompressible potential flow

∇2ϕ = 0 (8.94)

with solution the sum7 of the contributions of the three co-rotating vortices

ϕ = 1

π
arctan

y

x
− 1

2π
arctan

y − y1(t)

x − x1(t)
− 1

2π
arctan

y − y2(t)

x − x2(t)
. (8.95)

The position vector x1(t) = (x1(t), y1(t)) (and similarly x2(t)) is determined by
the observation that a vortex is just a property of the flow and therefore the velocity.
x1 (t) must be equal to the induced velocity of the other vortices at x = x1 :

dx1

dt
= 1

2π

y1 − y2

(x1 − x2)2 + (y1 − y2)2
− 1

π

y1

x2
1 + y2

1

(8.96a)

dy1

dt
= − 1

2π

x1 − x2

(x1 − x2)
2 + (y1 − y2)

2
+ 1

π

x1

x2
1 + y2

1

. (8.96b)

From symmetry x2 = −x1. Apart from an irrelevant phase shift the solution along
the circle |x| = 1 is given by

x1 = cos( 1
2ωt), y1 = sin( 1

2ωt), where ω = 3

2π
. (8.97)

Solution (8.95) can now be written as

ϕ = 1

π
θ − 1

2π
arctan

( r2 sin 2θ − sinωt

r2 cos 2θ − cosωt

)
. (8.98)

For matching with the outer field we need the behaviour of inner solution ϕ for
r→∞:

ϕ � sin(ωt − 2θ)

2πr2
+ · · · (r →∞). (8.99)

7Equation (8.94) is linear.
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For the outer region we first observe that the time scale is dictated by the source,
so this is the same everywhere. Then, if we scale r̃ = δ(ε)r , it follows from match-
ing with equation (8.99) that ϕ = O(δ2). A significant degeneration of (8.93) is
obtained if δ = ε, when ∇2ϕ and ∂2ϕ/∂t2 balance each other. Together we have:

r = r̃/ε (8.100a)

ϕ = ε2ϕ̃ (8.100b)

Q = ε2
(∂ϕ̃
∂t
+ 1

2ε
4
∣∣∇̃ϕ̃∣∣2) = ε2Q̃ (8.100c)

which gives(
1− (γ − 1)ε4 Q̃

)
∇̃2ϕ̃ = ∂ Q̃

∂t
+ ε4∇̃ϕ̃ ·∇̃ Q̃ (8.101)

To leading order, ϕ̃ satisfies the wave equation

∇̃2ϕ̃ − ∂
2ϕ̃

∂t2
= 0 (8.102)

with outward radiation conditions for r̃ →∞ (no source at infinity), and a condi-
tion of matching with (8.99) for r̃ ↓ 0. This matching condition says that, on the
scale of the outer solution, the inner solution behaves like a harmonic point source
∝ e2iωt at r̃ = 0, with properties to be determined.

Relevant point source solutions are

ϕ̃ = Re
{

AH (2)
n (ωr̃) eiωt−inθ

}
(8.103)

with H (2)
n a Hankel function (Appendix D), and order n and amplitude A to be

determined. For matching it is necessary that the behaviour for r̃ ↓ 0 coincides
with (8.99):

ε2 Re
{
−A

(n − 1)!

iπ

( 2

ωr̃

)n
eiωt−inθ

}
∼ sin(ωt − 2θ)

2πr2
(8.104)

(if n ≥ 1). Clearly, there is no other possibility than n = 2, and hence A = − 1
8ω

2.
Note that this order 2 indicates an acoustic field equivalent to that of a rotating
lateral quadrupole. In dimensional variables the acoustic far field is given by

ϕ � �M3/2

2

( a

πr

)1/2
cos

(
�(t − r/c0)− 2θ + 1

4π
)
. (8.105)
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where frequency � and vortex Mach number M are given by

� = ω�
a2
= 3�

2πa2
, M = �a

2c0
.

We see that for fixed θ the waves radiate outwards (r − c0t constant), for fixed r
the waves rotate with positive orientation (θ − 1

2�t constant), and at a fixed time
t the wave crests are localized along spirals (r + 2θc0/� constant). This may be
compared with a rotating lawn sprinkler.

The outward radiating time-averaged energy flux or intensity is found from equa-
tion (8.105) to be

I = 8

9
πρ0c3

0 M7 a

r
. (8.106)

This functional dependence on U 7 in 2D is to be compared with the U 8-law of
Lighthill for turbulence noise (equation 6.69), and forms a confirmation of the
estimates for turbulence in the Lighthill analogy.

We have now obtained the solution to leading order. Higher orders may be con-
structed in a similar fashion, but we will limit ourselves to the present one. For
higher orders more and more equivalent far fields of higher order multipoles will
appear.

We finally note that from a simple calculation the outward radiated 2D power is
equal to 16

9 π
2ρ0c3

0aM7. Strictly speaking, this amount of energy per time leaks
away from the total energy of the system of vortices (which scales on ρ0�

2), and
we could try to include a small decay in time of the vortex strength �. This is,
however, impossible in the present model.

Exercises

a) Determine (using Webster’s horn equation) the right-running wave p(x), with
p(0) = p̂0, in an exponential horn with radius a emx .

b) In a hot desert, a man is giving a speech to an audience. The mouth of the man and
the ears of the audience are at a height of y = h = 1.5 m above the flat ground, given
by y = 0. The ground is so hot compared to the air that a vertically stratified uniform
temperature profile is established in the air. We assume for the region relevant here
that this profile corresponds to a sound speed which is linear in y. The sound speed
profile is given by: c(y) = c0(1−εy), where c0 = 360 m/s and ε = 1

250 m−1. Since
the sound speed gradient is negative the sound waves are refracted upwards and will
disappear into the air. Under the assumptions that the man speaks loud enough, that
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8.10 Co-rotating line-vortices 277

a typical wave length is small enough for ray acoustics to be applicable, and that
we only consider rays that skim along the ground, what is the largest distance over
which the man can be heard?

c) Determine the suitable modelling assumptions and derive from the wave equations
(F.22) and (F.27) the following generalised Webster equations

A−1 d

dx

(∫∫
A

c2 dσ
d p

dx

)
+ ω2 p = 0, (8.107)

(ρ0 A)−1 d

dx

(
Aρ0

dφ

dx

)
− (

iω +U
d

dx

)[
c−2(iω +U

d

dx

)
φ
]
= 0. (8.108)
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9 Effects of flow and motion

Being a fluid mechanical phenomenon itself, an acoustic wave may be greatly af-
fected by mean flow effects like convection, refraction in shear, coupling with vor-
ticity, scattering by turbulence, and many others. We will briefly consider here
some of these effects.

9.1 Uniform mean flow, plane waves and edge diffraction

Consider a uniform mean flow in x direction with small irrotational perturbations.
We have then for potential φ, pressure p, density ρ and velocity v the problem
given by

∂2φ

∂x2
+ ∂

2φ

∂y2
+ ∂

2φ

∂z2
− 1

c2
0

( ∂
∂t
+U0

∂

∂x

)2
φ = 0,

p = −ρ0

( ∂
∂t
+U0

∂

∂x

)
φ, p = c2

0ρ, v = ∇φ
(9.1)

where U0, ρ0 and c0 denote the mean flow velocity, density and sound speed, re-
spectively. We assume in the following that |U0| < c0. The equation for φ is known
as the convected wave equation.

9.1.1 Lorentz or Prandtl-Glauert transformation

By the following transformation (in aerodynamic context named after Prandtl and
Glauert, but qua form originally due to Lorentz)

X = x

β
, T = βt + M

c0
X, M = U0

c0
, β =

√
1− M2, (9.2)

the convected wave equation may be associated to a stationary problem with solu-
tion φ(x, y, z, t) = ψ(X, y, z, T ) satisfying

∂2ψ

∂X2
+ ∂

2ψ

∂y2
+ ∂

2ψ

∂z2
− 1

c2
0

∂2ψ

∂T 2
= 0, p = −ρ0

β

( ∂
∂T
+ U0

∂

∂X

)
ψ. (9.3)
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For a time harmonic field eiωt φ(x, y, z) = ei�T ψ(X, y, z) or φ(x, y, z) =
eiK M X ψ(X, y, z), where � = ω/β, k = ω/c0 and K = k/β, we have

∂2ψ

∂X2
+ ∂

2ψ

∂y2
+ ∂

2ψ

∂z2
+ K 2ψ = 0. (9.4)

The pressure may be obtained from ψ , but since p satisfies the convected wave
equation too, we may also associate the pressure field directly by the same trans-
formation with a corresponding stationary pressure field. The results are not equiv-
alent, however, and especially when the field contains singularities some care is in
order. The pressure obtained directly is no more singular than the pressure of the
stationary problem, but the pressure obtained via the potential is one order more
singular due to the convected derivative. See the example below.

9.1.2 Plane waves

A plane wave (in x, y-plane) may be given by

φi = exp
(
−ik

x cos θn + y sin θn

1+ M cos θn

)
= exp

(
−ikr

cos(θ − θn)

1+ M cos θn

)
(9.5)

where θn is the direction of the normal to the phase plane and x = r cos θ , y =
r sin θ . This is physically not the most natural form, however, because θn is due to
the mean flow not the direction of propagation. By comparison with a point source
field far away, or from the intensity vector

I = (ρ0v + ρv0)(c
2
0ρ/ρ0 + v0 ·v) ∼ (β2 ∂

∂xφ − ik Mφ)ex + ∂
∂yφey

∼ (M + cos θn)ex + sin θney

we can learn that θs , the direction of propagation (the direction of any shadows), is
given by (see figure 9.1)

cos θs = M + cos θn√
1+ 2M cos θn + M2

, sin θs = sin θn√
1+ 2M cos θn + M2

. (9.6)

By introducing the transformed angle �s

cos�s = cos θs√
1− M2 sin2 θs

= M + cos θn

1+ M cos θn
, (9.7)

sin�s = β sin θs√
1− M2 sin2 θs

= β sin θn

1+ M cos θn
(9.8)
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280 9 Effects of flow and motion

and the transformed polar coordinates X = R cos�, y = R sin�, we obtain the
plane wave

φi = exp
(
i K M X − i K R cos(�−�s)

)
. (9.9)

9.1.3 Half-plane diffraction problem

By using the foregoing transformation, we obtain from the classical Sommerfeld
solution for the half-plane diffraction problem (see Jones [87]) of a plane wave
(9.9), incident on a solid half plane along y = 0, x < 0, the following solution
(see Rienstra [170])

φ(x, y) = exp
(
i K M X − i K R

)(
F(�s)+ F(� s)

)
(9.10)

where

F(z) = eiπ/4

√
π

eiz2
∫ ∞

z
e−it2

dt. (9.11)

and

�s, � s = (2K R)1/2 sin 1
2(�∓�s). (9.12)

θs

Figure 9.1 Sketch of scattered plane wave with mean flow

An interesting feature of this solution is the following. When we derive the corre-
sponding pressure

p(x, y) = exp
(
i K M X − i K R

)(
F(�s)+ F(� s)

)
+ e−iπ/4

√
π

M cos 1
2�s

1− M cos�s
exp

(
i K M X − i K R

)
sin 1

2�
( 2

K R

)1/2
, (9.13)
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9.2 Moving point source and Doppler shift 281

we see immediately that the first part is just a multiple of the solution of the poten-
tial, so the second part has to be a solution too. Furthermore, the first part is regular
like φ, while this second part is singular at the scattering edge. As the second part
decays for any R →∞, it does not describe the incident plane wave, so it may be
dropped if we do not accept the singularity in p at the edge. By considering this
solution

pv(x, y) = exp
(
i K M X − i K R

)sin 1
2�√

K R
, (9.14)

a bit deeper, it transpires that this solution has no continuous potential that decays
to zero for large |y|. This solution corresponds to the field of vorticity (in the form
of a vortex sheet) that is being shed from the edge. This may be more clear if
we contruct the potential for potential φv for large x , to be compared with (3.53),
which is

φv ∼ sign(y) exp
(
− ω

U0
|y| − i

ω

U0
x
)
, pv ∼ 0. (9.15)

In conclusion: we obtain the continuous-potential, singular solution by transform-
ing the no-flow solution in potential form, and the discontinuous-potential, regular
solution from the no-flow solution in pressure form. The difference between both
is the field of the shed vortex sheet.

The assumption that just as much vorticity is shed that the pressure field is not
singular anymore, is known as the unsteady Kutta condition. Physically, the amount
of vortex shedding is controlled by the viscous boundary layer thickness compared
to the acoustic wave length and the amplitude (and the Mach number for high
speed flow). These effects are not included in the present acoustic model, therefore
they have to be included by an additional edge condition, for example the Kutta
condition. As vorticity can only be shed from a trailing edge, a regular solution is
only possible if M > 0. If M < 0 the edge is a leading edge and we have to leave
the singular behaviour as it is.

9.2 Moving point source and Doppler shift

Consider a point (volume) source of strength Q(t) (the volume flux), moving sub-
sonically along the path x = xs(t) in a uniform acoustic medium. The generated
sound field is described by

1

c2
0

∂2 p

∂t2
−∇2 p = ρ0

∂

∂t

{
Q(t)δ(R(t))

}
, R(t) = x − xs(t). (9.16)
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282 9 Effects of flow and motion

Using the free field Green’s function (equation (6.37) or Appendix E)

G(x, t|y, τ ) = 1

4πc2
0|x − y|δ

(
t − τ − |x − y|

c0

)
,

the solution for potential ϕ, with p = −ρ0
∂
∂t ϕ, is given by

4πϕ(x, t) = −
∫ ∞
−∞

Q(τ )

R(τ )
δ
(

t − τ − R(τ )

c0

)
dτ, R = |R|. (9.17)

Using the δ-function integral (C.29)∫ ∞
−∞
δ(h(τ ))g(τ ) dτ =

∑
i

g(τi)

|h ′(τi )|, h(τi) = 0 (C.29)

this representation is very elegantly1 [42] reduced to the Liénard-Wiechert poten-
tial ([89, p.127])

4πϕ(x, t) = − Qe

Re(1− Me cos ϑe)
, (9.18)

where the subscript e denotes evaluation at time te, given by the equation

c0(t − te)− R(te) = 0. (9.19)

Absolute values are suppressed because we assumed |Me| < 1. Restriction (9.19)
is entirely natural and to be expected. If we trace the observed acoustic perturbation
back to its origin, we will find2 it to be created at time te by the source at position
xs(te) and strength Q(te). Therefore, te is usually called emission time, or retarded
time. It is important to note that by its implicit definition (9.19), te is a function of
both t and x.

Other convenient notations used here and below are

M = x′s/c0, M = |M|, RM cos ϑ = R·M,
where M and M are, respectively, the scalar and vectorial Mach number of the
source, while ϑ is the angle between the source velocity vector and the observer’s

1To appreciate the elegance the reader might compare it with the more traditional derivation as
found in [131, p.721] for the less general problem of a point source moving with constant speed
along a straight line.

2A generalization to supersonic motion of the source involves in general a summation, according
to (C.29), over more than one solution of equation (9.19).
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9.2 Moving point source and Doppler shift 283

position, seen from the source. The combination M cosϑ is often also denoted by
Mr .

By applying the chain rule to equation (9.19) we obtain the identities

∂te
∂t
= 1

1− Me cosϑe
,

∂Re

∂t
= − c0 Me cos ϑe

1− Me cosϑe
,

∂

∂t
(Re Me cosϑe) = Re ·M ′

e − c0 M2
e

1− Me cosϑe
.

After differentiation of equation (9.18) with respect to time, we finally have

4πp(x, t) = ρ0Q ′e
Re(1− Me cos ϑe)

2
+ ρ0Qe

Re ·M ′
e + c0 Me(cosϑe − Me)

R2
e (1− Me cosϑe)

3
.

(9.20)

The O(R−1
e )-part dominates the far field, while the O(R−2

e )-part dominates the
near field [112]. A typical effect of motion is that both the pressure and the poten-
tial fields are increased by the “Doppler factor” (1−Me cos ϑe)

−1, but not with the

same power. Furthermore, more Doppler factors appear for higher order multipole
sources. (See Crighton [30].)

The name “Doppler factor” is due to its appearance in the well-known frequency
shift of moving harmonic sources. Assume

Q(t) = Q0 eiω0t

with frequency ω0 so high that we can define an instantaneous frequency ω for an
observer of (9.20) at position x:

ω(t) = d

dt
(ω0te) = ω0

1− Me cos ϑe
. (9.21)

This describes the Doppler shift of frequency ω0 due to motion. Expression (9.20)
is quite general. The more common forms are for a straight source path with con-
stant velocity xs(t) = (V t, 0, 0) in which case Me is constant and x′′s = 0.

Analogous to the above point volume source, or monopole, we can deduce the
field of a moving point force, or dipole. For this we return to the original linearized
gas dynamics equations in ρ, v, and p with external force F(t)δ(x − xs(t)), and
eliminate ρ and v to obtain:

1

c2
0

∂2 p

∂t2
−∇2 p = −∇·{F(t)δ(R(t))

}
. (9.22)
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Following the same lines as in the monopole problem we have the solution

4πp(x, t) = −∇·( Fe

Re(1− Me cos ϑe)

)
(9.23)

Here we see that a rotating force is not the same as a rotating ∇·F -field, since
te = te(x, t). By application of the chain rule to equation (9.19) we derive:

∇Re = −c0∇te = Re

Re(1− Me cosϑe)
,

∇(Re Me cosϑe) = Me − Re

Re(1− Me cosϑe)

( Re ·M ′
e

c0
− M2

e

)
,

so that we have the general expression for a moving point force:

4πp(x, t) = Re ·F′e − c0 Me ·Fe

c0 R2
e (1− Me cos ϑe)

2
+ (Re ·Fe)

Re ·M ′e + c0(1− M2
e )

c0 R3
e (1− Me cos ϑe)

3
.

(9.24)

The O(R−1
e )-part dominates the far field, while the O(R−2

e )-part dominates the
near field [112].

It should be noted that the above distinction between a point source Q and a point
force F is rather idealized. In any real situation Q and F are coupled, since in
general a real mass source also produces a momentum change (see [42]).

9.3 Rotating monopole and dipole with moving observer

An application of the previous section is a model for (subsonic) propeller noise,
due to Succi and Farassat [51, 202].

Two main sources of sound may be associated to a moving propeller blade: the dis-
placement of fluid by the moving body leading to thickness noise, and the moving
lift force distribution leading to loading noise. See the next section 9.4, equation
(9.28). A description of the loading noise is obtained by representing the propeller
blade force by an equivalent distribution of point forces F j , followed by a summa-
tion over j of the respective sound fields given by equation (9.24).

The thickness noise is a bit more involved. It can be shown (equation 9.32) that
a compact moving body of fixed volume V generates a sound field, due to its
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9.3 Rotating monopole and dipole with moving observer 285

displacement of fluid, given by the time derivative of equation (9.16) while Q = V ,
with solution the time derivative of equation (9.20).

4πpth(x, t) = ρ0V
∂2

∂t2

1

Re(1− Me cosϑe)
.

(Equivalent forms in terms of spatial derivatives are also possible; see for example
[17, 51].) By discretizing the propeller blade volume by an equivalent collection of
volumes Vj , the thickness noise is found by a summation over j of the respective
sound fields.

The method is attractive in its relative simplicity, and easy programming. The for-
mulas are laborious, however. Therefore, to illustrate the method, we will work out
here the related problems of the far field of a subsonically rotating and translating
monopole Q = q0 and dipole f0. The position of the point source, rotating in the

x

y
z

Figure 9.2 Trajectory of point, moving along helical path xs (t).

x, y-plane along a circle of radius a with frequency ω, and translating along the
z-axis with constant velocity U (figure 9.2), is given by

xs(t) = (a cosωt, a sinωt,Ut).

It is practically of most interest to consider an observer moving with the source,
with forward speed Ut . Therefore, we start with the field of the source, given in
the stationary medium by equation (9.20), and substitute for position vector x the
position of a co-moving observer xo = (xo, yo, zo), given in spherical coordinates
by

xo(t) = (r cos φ sinϑ, r sinφ sinϑ, r cosϑ +Ut).

RienstraHirschberg 19 July 2006 20:00



286 9 Effects of flow and motion

With R(o)e = xo(t)− xs(te) we obtain the relations

R(o)e ·Me = MR r sinϑ sin(φ − ωte)+ MF r sinϑ + M2
F R(o)e ,

R(o)e ·M ′
e = c0 M2

R

(
1− r

a
sinϑ cos(φ − ωte)

)
,

M2
e = M2

R + M2
F , where MR = ωa/c0, MF = U/c0.

The “far field” denotes the asymptotic behaviour for (a/r)→ 0. Since

c2
0(t − te)

2 = (R(o)e )
2

= r2 − 2ar sinϑ cos(φ − ωte)+ a2 + 2Ur(t − te) cos ϑ +U 2(t − te)
2

and noting that asymptotically t − te = O(r/c0), we have for a/r → 0

te = t − r̃

c0
+ ã

c0
sinϑ cos(φ − ωt + kr̃)+ . . .

where k = ω/c0 and

r̃ = r
MF cosϑ +

√
1− M2

F sin2 ϑ

1− M2
F

, ã = a
1√

1− M2
F sin2 ϑ

.

With this we find:

R(o)e � r̃ − ã sinϑ cos(φ − ωt + kr̃)

Me cos ϑe �
[
(1− M2

F )MR sin ϑ sin(φ − ωt + kr̃)+ MF cosϑ

+M2
F

√
1− M2

F sin2 ϑ
]/[

MF cosϑ +
√

1− M2
F sin2 ϑ

]
Altogether in equation (9.20):

4πp(x, t) = ρ0c0q0

R2
e (1− Me cos ϑe)3

( (R(o)e ·M ′
e

c0
+ Me cosϑe − M2

e

)
� −ρ0c0q0

ar

(1− M2
F )

2 M2
R sin ϑ cos(φ − ωt + kr̃)(

MF cosϑ +
√

1− M2
F sin2 ϑ

)2(
1− Me cos ϑe

)3 (9.25)

We do have a O(1/r) decay, and in spite of the dQ(t)/dt = 0, a nearly harmonic
signal. Note the 2-lobe radiation pattern, i.e. 2 maxima perpendicular to the axis of
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Figure 9.3 Time history of sound pressure generated by spiralling point source (left) and
point force (right).

rotation where sinϑ = 1, and minima in the direction of the axis where sinϑ = 0.

The rotating point force will portray a very simple propeller model. We assume
the propeller to be concentrated in one point (this is a plausible approximation for
the lowest harmonics) by a point force equal to the blade thrust force (the pressure
jump across the blade integrated over the blade), in a direction perpendicular to
the blade. Furthermore, the blade surface will practically coincide with the screw
plane described by the effective velocity field V = U ex − ωa eθ .

So we have a force

F(t) = f0√
U 2 + (ωa)2

(U sinωt,−U cosωt, ωa) (9.26)

In figure 9.3 plots are made of the time history of the sound pressure generated by
the above point source and point force, for the following parameters: U = 145m/s,
c0 = 316 m/s, a = 1.28 m, ω = 17·2π /s, f0 = 700 N, ρ0 = 1.2 kg/m3, q0 =
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1.8 m3/s, for an observer moving with and in the plane of the source at a distance
x0 = 2.5 m. No far-field approximation is made.

9.4 Ffowcs Williams & Hawkings equation for moving
bodies

Curle (6.85) showed that the effect of a rigid body can be incorporated in the aero-
acoustical analogy of Lighthill as additional source and force terms Qm and F.
This approach has been generalized by Ffowcs Williams and Hawkings who de-
rived [55] a very general formulation valid for any moving body, enclosed by a
surface S(t). Their derivation by means of generalized functions (surface distribu-
tions, section C.2.8) is an example of elegance and efficiency. Although originally
meant to include the effect of moving closed surfaces into Lighthill’s theory for
aerodynamic sound, it is now a widely used starting point for theories of noise
generation by moving bodies like propellers, even when turbulence noise is of lit-
tle or no importance.

There is no unique relation between a source and its sound field, because a given
field can be created by infinitely many equivalent but different sources (section
2.6.1). Therefore, there is no unique way to describe the effect of a surface S(t)
in terms of an acoustic source distribution, and a simple and transparent choice is
preferable. The choice put forward by Ffowcs Williams and Hawkings was both
simple and transparent: just force any flow variable to vanish inside the enclosed
volume. The resulting equations are automatically valid everywhere, and use can
be made of the free field Green’s function.

Consider a finite volume V = V(t) with sufficiently smooth surface S = S(t),
moving continuously in space. Introduce a (smooth) function f (x, t) such that

f (x, t)


< 0 if x ∈ V(t),

= 0 if x ∈ S(t),

> 0 if x �∈ V(t),

but otherwise arbitrary. If we multiply any physical quantity by the Heaviside func-
tion H ( f ) – such as ρ ′H ( f ) – we obtain a new variable which vanishes identically
within V because H ( f ) = 1 in the fluid, and H ( f ) = 0 inside V. Since ∇ f | f=0 is
directed normal outwards from V, the outward normal n of S is given by (section
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A.3).

n(x, t) = ∇ f

|∇ f |
∣∣∣∣

f=0

.

Let the surface S(t) be parametrized in time and space, by coordinates3 (t;λ,µ).
A surface point xS(t) ∈ S (consider λ and µ fixed), moving with velocity U = .

xS ,
remains at the surface for all time, so f (xS(t), t) = 0 for all t , and therefore

∂ f

∂t
= − .

xS ·∇ f = −(U ·n)|∇ f |.

It is important to note that the normal velocity (U ·n) is a property of the sur-
face, and is independent of the choice of f or parametrization. We now start the
derivation by multiplying the exact equations (1.1,1.2) of motion for the fluid by
H ( f ):

H ( f )
[∂ρ ′
∂t
+∇·(ρv)] = 0,

H ( f )
[ ∂
∂t
(ρv)+∇·(P + ρvv)] = 0,

where ρ ′ = ρ − ρ0 and ρ0 is the mean level far away from the body. Although
the original equations were only valid outside the body, the new equations are triv-
ially satisfied inside V, and so they are valid everywhere. By reordering the terms,
and using the identity ∂

∂t H ( f ) = −U ·∇H ( f ), the equations can be rewritten as
equations for the new variables ρ ′H ( f ) and ρvH ( f ) as follows.

∂

∂t
[ρ ′H ( f )] + ∇·[ρvH ( f )] = [ρ0U + ρ(v − U)]·∇H ( f ),

∂

∂t
[ρvH ( f )] + ∇·[(ρvv + P)H ( f )] = [ρv(v − U)+ P]·∇H ( f ).

Using the same procedure (subtracting the time-derivative of the mass equation
from the divergence of the momentum equation) as for Lighthill’s analogy (2.63),

3When S(t) is the surface of a solid and undeformable body, it is natural to assume a spatial
parametrization which is materially attached to the surface. This is, however, not necessary. Like the
auxiliary function f , this parametrization is not unique, but that will appear to be of no importance.
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we find the Ffowcs Williams-Hawkings equations [55]:

∂2

∂t2
ρ ′H ( f )− c2

0∇2ρ ′H ( f ) =
∇·∇·[(ρvv − τ + (p′ − c2

0ρ
′) I

)
H ( f )

]
+ ∂

∂t

[(
ρ(v − U)+ ρ0U

)·∇H ( f )
]

− ∇·[(ρv(v − U)+ p′ I − τ
)·∇H ( f )

]
. (9.27)

The sources at the right hand side consist of the double divergence of the common
quadrupole-type Lighthill stress tensor, and a time derivative and divergence of
sources only present at the surface f = 0. Of course, the right hand side contains
all the unknowns, and in principle this equation (9.27) is not simpler to solve than
the original Navier-Stokes equations. However, as with Lighthill’s analogy, the
source terms are of aerodynamic nature, and can be solved separately, without
including the very small acoustic back-reaction.

Very often, Lighthill’s stress tensor ρvv− τ + (p′ − c2
0ρ
′) I and the shear stresses

at the surface are negligible. Moreover, if the surface S is solid such that v ·n =
U ·n, and we change from density to pressure as our field variable, and define
p̄ ′ = p′H ( f ), we have a reduced form of the Ffowcs Williams-Hawkings equa-
tion, which is widely used for subsonic propeller and fan noise (no shocks) [51]

1

c2
0

∂2

∂t2
p̄ ′ − ∇2 p̄ ′ = ∂

∂t

[
ρ0U ·n|∇ f |δ( f )

]
−∇·[p′n|∇ f |δ( f )

]
. (9.28)

The first source term is of purely geometrical nature, and describes the noise gen-
erated by the fluid displaced by the moving body. The associated field is called
thickness noise. The second part depends on the normal surface stresses due to
the pressure distribution, and describes the noise generated by the moving force
distribution. The associated field is called loading or lift noise.

If we know the pressure distribution along the surface, we can in principle solve
this equation, in a way similar to the problem of the moving point source of section
9.2. Let us consider first the following prototype problem

1

c2
0

∂2

∂t2
ϕ −∇2ϕ = Q(x, t)|∇ f |δ( f ). (9.29)

By using the free field Green’s function we can write

4πϕ(x, t) =
∫ ∫∫∫

Q(y, τ )
R

δ(t − τ − R/c0)|∇ f |δ( f ) d y dτ,
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where R = |x − y(τ )|, the distance between observer’s and source’s position.
Noting that |∇ f |δ( f ) is just equivalent to the surface distribution of S(t) (equation
C.39), we can integrate δ( f ) (equation C.38 or C.40) and write

4πϕ(x, t) =
∫ ∫∫

S(t)

Q(y, τ )
R

δ(t − τ − R/c0) dσ dτ.

The integral over τ can be evaluated by noting that any contributions come from
the solution τ = te of the emission-time equation (the zero of the argument of the
remaining δ-function), given by

c0(t − τ)− R = 0,

which describes (for given x, t) a surface in (y, τ )-space, symbolically denoted by
S(te). Analogous to the point source field (9.18) we have then

4πϕ(x, t) =
∫∫

S(te)

Qe

Re(1− Me cosϑe)
dσ. (9.30)

As before, subscript e denotes evaluation at emission time te, and M cosϑ is the
component of the vectorial Mach number of the source in the direction of the ob-
server (in some literature also denoted by Mr ). From this auxiliary solution we can
now formulate a solution for p̄ ′ as follows

4π p̄ ′(x, t) = ∂

∂t

∫∫
S(te)

ρ0Ue ·ne

Re(1− Me cosϑe)
dσ

− ∇·
∫∫

S(te)

pene

Re(1− Me cosϑe)
dσ. (9.31)

Extreme care should be taken in interpreting this equation, because for any x and
t the emission time te varies over the source region, while at the same time the
source varies its position! Other forms of the solution are available which might be
easier to handle in certain applications; see e.g. Farassat [50, 51].

It is therefore interesting to consider the compact limit, in which case the typical
wave length is much longer than the body size. The emission time does not vary
significantly over the source region, and Re and Me cos ϑe refer only to a single
typical source coordinate xs , for example the centre of gravity. The source becomes
equivalent to a point source (section 9.2,9.3).
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A particularly interesting form (Farassat [51]) for the thickness noise component
is found by writing the surface integral as a volume integral. Using

ρ0U ·n|∇ f |δ( f ) = ∂

∂t
ρ0(1− H ( f )),

and noting that the function 1 − H ( f ) equals unity inside the body V and zero
elsewhere, we have for the thickness noise component of equation (9.31)

∂

∂t

∫∫
S(te)

ρ0Ue ·ne

Re(1− Me cosϑe)
dσ = ∂2

∂t2

∫∫∫
V(te)

ρ0

Re(1− Me cosϑe)
d y.

Since the volume integral of the constant 1 is just V , the volume of V, and denoting
the total force of the fluid on the body by

F(t) =
∫∫
S(t)

p·n dσ,

we have the compact limit of equation (9.31) (see also section 9.3)

4π p̄ ′(x, t) � ∂2

∂t2

( ρ0V

Re(1− Me cosϑe)

)
−∇·( Fe

Re(1− Me cosϑe)

)
.

(9.32)
Exercises

a) Evaluate the expressions for the acoustic field of the propeller of equation 9.26
without forward speed (U = 0) and find the approximation for the far field. What
can you tell about the typical lobes in the radiation pattern?

b) Evaluate the expressions for the acoustic field of a moving point volume source
(9.20) and point force (9.24) for the windtunnel situation: a moving source xs =
V t ex and a moving observe x = a + V t ex .
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A Integral laws and related results

A.1 Reynolds’ transport theorem

Conservation laws such as mass conservation are understood most easily when
they are applied to a volume V = V (t) (enclosed by the surface S = S(t)) which
is contained in the fluid. We call this a material volume. The concept arises when
considering a fluid particle which is large in number of molecules, but small com-
pared to the macroscopic scales in the problem. For a certain –diffusion controlled–
period of time the particle keeps its identity, and can be labelled.

For an arbitrary single-valued scalar function F = F(xi , t) (denoting any property
of the fluid) with continuous derivatives the following integral relation holds:

d

dt

∫∫∫
V

F dx =
∫∫∫

V

(
DF

Dt
+ (∇·v)F

)
dx

=
∫∫∫

V

∂F

∂t
dx +

∫∫
S

Fv ·n dσ. (A.1)

This theorem, known as Reynolds’ Transport Theorem (see equation C.41), is used
to translate integral conservation laws into differential conservation laws.

A.2 Conservation laws

The conservation laws (mass, momentum, energy) in integral form are more gen-
eral than in differential form because they can be applied to flows with discontin-
uous properties. We will give here a summary of the basic formulae. A detailed
derivation may be found in [152] or [205].

Mass conservation (F = ρ):

d

dt

∫∫∫
V

ρ dx = 0. (A.2)
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Momentum conservation (F = ρvi ):

d

dt

∫∫∫
V

ρvi dx =
∫∫∫

V

fi dx −
∫∫
S

Pij n j dσ. (A.3)

Energy conservation (F = ρ(e + 1
2v

2), v2 = vivi ):

d

dt

∫∫∫
V

ρ(e + 1
2v

2) dx

=
∫∫∫

V

fivi dx −
∫∫
S

Pijv j ni dσ −
∫∫
S

qi ni dσ. (A.4)

For an arbitrary control volume V ∗(t) with surface S∗(t), and where b is the local
velocity of S∗, Reynolds’ theorem becomes:

d

dt

∫∫∫
V ∗

F dx =
∫∫∫
V ∗

∂F

∂t
dx +

∫∫
S∗

Fbi ni dσ. (A.5)

Applying (A.2) and (A.5) with F = ρ we find:

d

dt

∫∫∫
V ∗

ρ dx =
∫∫∫
V ∗

∂ρ

∂t
dx +

∫∫
S∗

ρbi ni dσ (A.6)

∫∫∫
V

∂ρ

∂t
dx = −

∫∫
S

ρvi ni dσ. (A.7)

At a given instant V ∗ coincides with a given material volume V , hence (A.7) can
be used to eliminate the first integral on the right-hand side of (A.6) to obtain:

d

dt

∫∫∫
V ∗

ρ dx =
∫∫
S∗

ρ(bi − vi)ni dσ. (A.8)

This can be applied to any volume V ∗ and in particular to a fixed volume (bi = 0).
In a similar way we have for the momentum:

d

dt

∫∫∫
V ∗

ρvi dx +
∫∫
S∗

ρvi (v j − b j )n j dσ

=
∫∫∫
V ∗

fi dx −
∫∫
S∗

Pij n j dσ (A.9)
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and for the energy:

d

dt

∫∫∫
V ∗

ρ(e + 1
2v

2) dx +
∫∫
S∗

ρ(e + 1
2v

2)(vi − bi )ni dσ

=
∫∫∫
V ∗

fivi dx −
∫∫
S∗

Pijv j ni dσ −
∫∫
S∗

qi ni dσ. (A.10)

For the entropy s we further find:

d

dt

∫∫∫
V ∗

ρs dx +
∫∫
S∗

ρs(vi − bi )ni dσ +
∫∫
S∗

1

T
qini dσ ≥ 0 (A.11)

where the equality is valid when the processes in the flow are reversible.

A.3 Normal vectors of level surfaces

A convenient way to describe a smooth surface S is by means of a suitable smooth
function S(x), where x = (x, y, z), chosen such that the level surface S(x) = 0 is
just equivalent to S. So S(x) = 0 if and only if x ∈ S.

Consider a point x0 and a neighbouring point x0+h, both on the surface S. Expand
S(x0 + h) into a Taylor series in h. We then obtain

S(x0 + h) = S(x0)+ h·∇S(x0)+ O(h2) � h·∇S(x0) = 0.

Since in the limit for |h| → 0 the vector ∇S(x0) is normal to the tangent vector
h, it is normal to the surface S. Furthermore, the unit normal vector nS = ∇S

|∇S| (at
S = 0) is directed from the S < 0-side to the S > 0-side.

If we expand S(x) near x0 ∈ S we have S(x) = (x − x0)·∇S(x0) + . . . , so,
near the surface, S(x) varies, to leading order, only in the coordinate normal to the
surface.
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B Order of magnitudes: O and o.

In many cases it is necessary to indicate in a compact way the behaviour of some
function f (x), of variable or parameter x , as x tends to some limit (finite or infi-
nite). The usual way to do this is by comparing with a simpler function g(x). For
this we have the order symbols O and o. When f is comparable with or dominated
by g, we have

Definition B.1 f (x) = O(g(x)) as x → a

means, that there is a constant C and an interval (a − h, a + h)
such that for all x ∈ (a − h, a + h): | f (x)| ≤ C|g(x)|.

When x ↓ a the interval is one-sided: (a, a + h); similarly for x ↑ a. For the
behaviour at infinity we have

Definition B.2 f (x) = O(g(x)) as x →∞
means, that there is a constant C and an interval (x0,∞)
such that for all x ∈ (x0,∞): | f (x)| ≤ C|g(x)|.

Similarly for x →−∞. When f is essentially smaller than g we have

Definition B.3 f (x) = o(g(x)) as x → a

means, that for every positive δ there is an interval (a − η, a + η)
such that for all x ∈ (a − η, a + η): | f (x)| ≤ δ|g(x)|.

with obvious generalizations to x ↓ a, x →∞, etc.

Theorem B.1 If lim
f (x)

g(x)
exists, and is finite, then f (x) = O(g(x)).

Theorem B.2 If lim
f (x)

g(x)
= 0, then f (x) = o(g(x)).

Note that f = o(g) implies f = O(g), in which case the estimate O(g) is only an
upper limit, and not as informative as the “sharp O”, defined by

Definition B.4 f (x) = Os(g(x)) means: f (x) = O(g(x)) but f (x) �= o(g(x).



C Fourier transforms and generalized
functions

C.1 Fourier transforms

The linearity of sound waves allows us to build up the acoustic field as a sum
of simpler solutions of the wave equation. The most important example is the re-
duction into time harmonic components, or Fourier analysis. This is attractive in
several respects. Mathematically, because the equation simplifies greatly if the co-
efficients in the wave equation are time-independent, and physically, because the
Fourier spectrum represents the harmonic perception of sound.

Consider a function p(t) with the following (sufficient, not necessary) conditions
[21, 88, 109, 153, 225].

– p is continuous, except for at most a finite number
of discontinuities where p(t) = 1

2 [p(t + 0)+ p(t − 0)].
– |p(t)| and |p(t)|2 are integrable.

Then the Fourier transform p̂(ω) of p(t) is defined as the complex function

p̂(ω) = Fp(ω)
def== 1

2π

∫ ∞
−∞

p(t) e−iωt dt, (C.1)

while according to Fourier’s inversion theorem, p(t) is equal to the inverse Fourier
transform

p(t) = F −1
p̂ (t)

def==
∫ ∞
−∞

p̂(ω) eiωt dω. (C.2)

The Fourier transform and its inverse are closely related. Apart from a sign change
and a factor 2π , it is the same operation: F −1

p̂ (t) = 2πF p̂(−t). It is important to
note that slight differences with respect to the factor 1/2π , frequency ω = 2π f ,
and the sign of the phase iωt are common in the literature. Especially the prevailing
e±iωt -convention should always be checked when referring or comparing to other
work.
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Some examples of Fourier transforms are:

1

2π

∫ ∞
−∞

H (t) e−αt e−iωt dt = 1

2π(α + iω)
, (C.3a)

1

2π

∫ ∞
−∞

H (t)√
t

e−αt e−iωt dt = 1

2
√
π
√
α + iω

, (C.3b)

1

2π

∫ ∞
−∞

1

1+ t2
e−iωt dt = 1

2
e−|ω|, (C.3c)

1

2π

∫ ∞
−∞

e−
1
2 t2

e−iωt dt = 1√
2π

e−
1
2ω

2
, (C.3d)

where α > 0, the ordinary square root is taken, and H (t) denotes Heaviside’s unit
step function (C.30), which is H (t) = 1 for t > 0 and H (t) = 0 for t < 0.

Although it may seem to be no serious restriction to assume that a physically
relevant signal p(t) vanishes at t = ±∞, we deal in practice with simplified
models, yielding expressions for p(t) which do not decay at infinity (e.g. a con-
stant, sin(ω0t)). So we have on the one hand the “real” p(t) which is Fourier-
transformable, and on the other hand the approximate “model” p(t), which is not
always Fourier-transformable. Is there a way to approximate, or at least get an idea
of, the real Fourier transform, using the approximate p(t)? One way is to assume
p to vanish outside a certain large interval [−N, N ], as for example:

1

2π

∫ N

−N
e−iωt dt = sinωN

πω

1

2π

∫ N

−N
sin(ω0t) e−iωt dt = i

2π

(sin(ω0 + ω)N
ω0 + ω − sin(ω0 − ω)N

ω0 − ω
)

We see a large maximum (∼ N/π ) depending on N near the dominating fre-
quencies, and for the other frequencies an oscillatory behaviour, also depending on
N , that is difficult to interpret. This is too vague and too arbitrary for general use.
Therefore, a mathematically more consistent and satisfying approach, not depend-
ing on the arbitrary choice of the interval size, will be introduced later in terms of
generalized functions.
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Derivative

Since a derivative to t corresponds to a multiplication by iω as follows

d

dt
p(t) =

∫ ∞
−∞

iω p̂(ω) eiωt dω, (C.4)

the wave equation reduces to the Helmholtz equation

∇2ϕ − 1

c2

∂2ϕ

∂t2
= 0

F.T.=⇒ ∇2ϕ̂ + ω
2

c2
ϕ̂ = 0. (C.5)

Further reduction is possible by Fourier transformation in space variables.

More dimensions and Hankel transform

Fourier transforms in n space dimensions is usually denoted as

f̂ (k) =
∫
R

n
f (x) eik·x dx, f (x) = 1

(2π)n

∫
R

n
f̂ (k) e−ik·x dk. (C.6)

The Hankel transform Hm( f ;ρ) of a function φ(r), given by

Hm(φ;ρ) =
∫ ∞

0
φ(r)Jm(ρr)r dr (C.7)

arises naturally when the 2D Fourier transform of a function f (x) is re-written in
polar coordinates.

f̂ (k) =
∫∫

R
2

f (x) eik·x dx =
∞∑

m=−∞
eimα Hm( fm;ρ) (C.8)

where x = (r cos ϑ, r sinϑ), k = (ρ sinα, ρ cos α),

f (x) = 1

2π

∞∑
m=−∞

fm(r) e−imϑ

and use is made of equation (D.62).
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Multiplication and convolution

Fourier transformation is basically a linear operation and little can be said about
other than linear combinations of transformed functions. Only for multiplication
with powers of ω we have∫ ∞

−∞
(iω)n p̂(ω) eiωt dω = dn

dtn
p(t). (C.9)

For multiplication with a general q̂(ω) we find the convolution product of p(t) and
q(t), also known as the Convolution Theorem

(p∗q)(t) = 1

2π

∫ ∞
−∞

p(t ′)q(t − t ′) dt ′ =
∫ ∞
−∞

p̂(ω)q̂(ω) eiωt dω. (C.10)

Note that in terms of generalized functions, to be introduced below, result (C.9) for
the product with ωn is a special case of the convolution theorem. A particular case
is Parseval’s theorem, obtained by taking1 q(t ′) = p∗(−t ′) and t = 0:∫ ∞

−∞
| p̂(ω)|2 dω = 1

2π

∫ ∞
−∞
|p(t ′)|2 dt ′ (C.11)

which is in a suitable context a measure of the total energy of a signal p(t).

Poisson’s summation formula

Intuitively, it is clear that the high frequencies relate to the short time behaviour,
and the low frequencies to the long time behaviour. An elegant result due to Poisson
is making this explicit.

∞∑
n=−∞

p(λn) = 2π

λ

∞∑
n=−∞

p̂
(2πn

λ

)
. (C.12)

Sampling with large steps (λ large) of p yields information about the low part of
the spectrum and vice versa.

Reality condition

Although p̂(ω) is complex, the corresponding p(t) is in any physical context real.
Therefore, not any p̂(ω) can occur. A given p̂(ω) corresponds to a real signal p(t)

1z∗ = x − i y denotes the complex conjugate of z = x + i y.
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if it satisfies the reality condition

p̂(−ω) = p̂(ω)∗. (C.13)

This is just the consequence of p(t), given by equation (C.2), being identically
equal to its complex conjugate.

C.1.1 Causality condition

The wave equation and the equation of motion do not impose a direction for the
time, if dissipation effects are neglected. The fact that the sound should be pro-
duced before we observe it (causality) is not a property automatically implied by
our equations, and it should be imposed to the solution. The problem is simple for
an initial value problem, where it suffices to require a zero field before the switch-
on time. However, when we consider a time-harmonic solution, or in general based
on Fourier analysis, it is not obvious any more because we assume the solution to
be built up from stationary oscillations. Stationary means that it exists forever and
has always existed. In such a case causality, i.e. the difference between cause and
effect, is not readily clear. It is therefore of interest to investigate conditions for the
Fourier transform that guarantees a causal signal.

No physical process can exist for all time. A process p(t) that starts by some cause
at some finite time t = t0, while it vanishes before t0, is called causal. The corre-
sponding Fourier transform

p̂(ω) = 1

2π

∫ ∞
t0

p(t) e−iωt dt (C.14)

has the property that p̂(ω) is analytic2 in the lower complex half-space

Im(ω) < 0. (C.15)

So this is a necessary condition on p̂ for p to be causal. Examples are the expo-
nentially decaying functions, switched on at t = 0, of equations (C.3a) and (C.3b).
The Fourier transforms are non-analytic in the upper half-plane (singularities at
ω = iα and a branch cut from iα up to i∞), but are indeed analytic in the half-
plane Im(ω) < α.

2Infinitely often differentiable in the complex variable ω.
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A sufficient condition3 is the following causality condition [153].

Theorem C.1 (Causality Condition)
If: (i) p̂(ω) is analytic in Im(ω) ≤ 0, (ii) | p̂(ω)|2 is integrable along the real axis,
and (iii) there is a real t0 such that eiωt0 p̂(ω)→ 0 uniformly with regard to arg(ω)
for |ω| → ∞ in the lower complex half plane, then: p(t) is causal, and vanishes
for t < t0.

(Note that the lower complex half-space becomes the upper half-space if the op-
posite Fourier sign convention is taken.) Consider as a typical example the in-
verse transform of equation (C.3a). When t > 0 the exponential factor eiωt =
ei Re(ω)t e− Im(ω)t decays in the upper half plane, so the contour can be closed via
the upper half plane, resulting in 2π i times the residue4 of the pole in iα. When
t < 0 the contour can be closed via the lower half plane, with zero result because
the integrand is analytic there: causal as it should be.∫ ∞

−∞

eiωt

2π(α + iω)
dω =

{
e−αt if t > 0,

0 if t < 0.

It should be noted that in the limit of no damping (α ↓ 0) the singularity of (C.3a)
and (C.3b) at ω = iα moves to ω = 0, which is on the real axis. This is a bit of
a problem if we are interested in the inverse transform5, because the real ω-axis
is just the contour of integration, and a pole there would make the result of the
integral ambiguous. The integral is to be interpreted via a suitable deformation6 of
the contour, but this is either over or under the singularity, and the results are not
the same. So, without further information this would leave us with two possible but
different answers!

3Cauchy’s theorem [96] for analytic functions says that if f is analytic in the inner-region of a
closed contour C in the complex plane, the integral of f along C is equal to zero:

∫
C f (z)dz = 0.

Under the conditions stated in theorem (C.1) (p.302) the function p̂(ω) exp(iωt) is analytic in the
lower-half complex ω-plane. So its integral along the closed contour consisting of the real interval
[−R, R] and the semi-circle ω = R eiθ , −π < θ < 0, is equal to zero.

Let R→∞ while t < 0 (= t0; the case of a general t0 is similar).
The factor eiωt = ei Re(ω)t e− Im(ω)t decays exponentially fast to zero in the lower complex ω-plane
because − Im(ω)t < 0. Hence, the contribution from the large semi-circle becomes exponentially
small and vanishes. So the part along the real axis is also zero. However, this is just p(t), the inverse
Fourier transform of p̂.

4If z = z0 is a simple pole of f (z), then the residue of f at z0 is: Res f (z0) = limz→z0(z−z0) f (z).
5We ignore for the moment the problem that for α = 0 the original time signal is only Fourier

transformable in the context of generalized functions.
6The integral of an analytic function does not change with deformation of the integration contour

within the region of analyticity.
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We do know, however, that this singularity comes from the complex upper half, so
we have to indent the contour under the pole. This is exactly in agreement with
the argument of causality: a causal signal has a Fourier transform that is analytic
in the lower complex half-plane, so it is safe to indent the contour into the lower
half-plane. The singularity is to be considered to belong to the upper half-plane.

This example is typical of the more general case of a signal p(t), described via
the inverse transform of its Fourier transform. If it occurs that, due to inherent
idealizations of the model, this Fourier transform has singularities along the real ω
axis, the causality condition tells us how to deal with this problem. Consider the
following example. The transformed harmonic-like signal

p̂(ω) = −ω0

2π

1

ω2 − ω2
0

has to be analytic in the lower half plane, so that the integration contour can
be closed with zero result if t < 0. Therefore, the contour must be indented in
Im(ω)< 0 around ω = ω0 and ω = −ω0 (figure C.1). The result is then

real axis

imaginary
axis

• •
� � � �

ω0−ω0

ω ∈ C

Figure C.1 Integration contour in complex ω-plane.

p(t) = H (t) sin(ω0t).

A more subtle example, dealing with complicated manipulations in two complex
planes, is the following. Consider the field p(x, t), described via a Fourier integral
for both the x- and the t-dependence.

p(x, t) =
∫ ∞
−∞

∫ ∞
−∞

p̃(k, ω) eiωt−ikx dkdω.
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If p̃(k, ω), the time- and space-Fourier transformed p(x, t), is given by:

p̃(k, ω) = 1

4π2c2
0

1

k2 − ω2/c2
0

, (C.16)

then the time-Fourier transformed p̂(x, ω), given by

p̂(x, ω) = 1

4π2c2
0

∫ ∞
−∞

e−ikx

k2 − ω2/c2
0

dk,

must be analytic in Im(ω)≤ 0. This means that the contour in the complex k-plane
(the real axis) must be indented up-around k = ω/c0 and down-around k = −ω/c0

(figure C.2). This is seen as follows. For any value of ±ω/c0 not on the k-contour,

real axis

imaginary
axis

• •
� �

� �
��

ω/c0

−ω/c0

k ∈ C

�

�

Figure C.2 Integration contour in complex k-plane. The arrows indicate the path of the poles±ω/c0
in the k-plane, when ω moves in its complex ω-plane from the negative imaginary half
onto the real axis, as Im(ω)↑ 0.

the integral exists and can be differentiated to ω any times, so p̂(x, ω) is ana-
lytic in ω. However, when a pole k = ω/c0 or k = −ω/c0 crosses the contour,
p̂(x, ω) jumps discontinuously by an amount of the residue at that pole, and there-
fore p̂(x, ω) is not analytic for any ±ω/c0 on the contour. So, here, the value of
the integral may be either the limit from above or from below. Since causality re-
quires that p̂(x, ω) is the analytic continuation from Im(ω)< 0, we have to take the
limit Im(ω)↑ 0, i.e. from below for the pole k = ω/c0 and from above for the pole
k = −ω/c0. Since a deformation of the integration contour for an analytic function
does not change the integral, these limits are most conveniently incorporated by a
small deformation of the contour, in a direction opposite to the limit (Fig. C.2).
The result is

p̂(x, ω) = e−iω|x |/c0

4π ic0ω
. (C.17)
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As before, the pole ω = 0 belongs to the upper ω-half plane, and we have (c.f.
(4.84))

p(x, t) = 1

4π ic0

∫ ∞
−∞

eiω(t−|x |/c0)

ω
dω

= 1

2c0
H (t − |x|/c0). (C.18)

If we read x − y for x and t − τ for t , this is just the one-dimensional Green’s
function. (See also below).

C.1.2 Phase and group velocity

The phase velocity of a wave, given by eiωt−iκx (ω and κ real), is that velocity for
which the phase ωt − κx = constant. This is

vphase = ω
κ

(C.19)

Since a harmonic wave is an idealisation, any wave is really a packet with a begin-
ning and an end, and this packet does not necessarily travel with the phase speed,
but with the group velocity. This should also be the speed of the energy if an energy
is defined.

To determine the group velocity for an almost harmonic problem, i.e. with a Fourier
representation concentrated near a single frequency ω = ω0, we have to consider
the time dependent problem:

φ(x, t) =
∫ ∞
−∞

f (ω) eiωt−iκ(ω)x dω =
∫ ω0+ε

ω0−ε
f (ω) eiωt−iκ(ω)x dω

� f (ω0) eiω0t−iκ0x
∫ ω0+ε

ω0−ε
ei(ω−ω0)t−i(ω−ω0)κ

′
0x dω (C.20)

with κ0 = κ(ω0), κ ′0 = d
dωκ(ω0), so that

φ(x, t) � 2 f (ω0)
sin ε(t − κ ′0x)

t − κ ′0x
eiω0t−iκ0x (C.21)

which describes a wave packet centred around t = κ ′0x , and therefore travelling
with the velocity

vgroup = (κ ′0)−1. (C.22)
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C.2 Generalized functions

C.2.1 Introduction

In reality dissipative effects will cause any discontinuity to be smooth and any
signal to decay for t → ∞, while any signal can be regarded to be absent for
t → −∞. So the classical concept of (smooth) functions is more than adequate
to describe any property of a real sound field. This is, however, not the case in
most of our idealized models. For example, a point source of vanishing size but
finite source strength cannot be described by any ordinary function: it would be
something that is zero everywhere except in one point, where it is infinitely large.
Another example is a non-decaying signal, even as common as sin(ωt), which
(classically) cannot be Fourier transformed: for some frequencies the Fourier inte-
gral is not defined and for others just infinitely large. Still, the spectrum of sin(ωt),
consisting of two isolated peaks at ω and −ω, is almost a prototype!

Does that mean that our idealized models are wrong, or too restricted to be useful?
No, not at all. Only our mathematical apparatus of functions is too restricted. It
is therefore convenient, even vital for a lucid theory, to extend our meaning of
function to the so-called generalized functions [109, 88, 225, 92, 52].

Technically speaking, generalized functions or tempered distributions are not func-
tions with a pointwise definition. Their meaning is always defined in an integrated
sense. There are many definitions and terminology7 of generalized function spaces,
mathematically not equivalent, but all containing the elements most important in
applications (delta function, Heaviside function, etc.). See for example [52].

C.2.2 Formal definition

In the present context we will follow the definition that is intuitively most appeal-
ing: the limit8 in a suitable function space G, such that derivatives and Fourier
transforms are always defined. This definition is analogous to the definition of real
numbers by convergent sequences of rational numbers. We start with the space of

7For example: generalized functions and tempered distributions when Fourier transformation is
guaranteed, weak functions and distributions when derivatives are guaranteed.

8Technically termed: closure of. . .
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the real, smooth, and very fast decaying good functions

G
def==

{
f : R→ R | f (k) ∈ C∞(−∞,∞) and (C.23)

f (k) = O(|x|−n) (|x| → ∞) for any n, k ≥ 0
}
.

where f (k)(x) = dk

dxk f (x). A sequence ( fn) ⊂ G defines a generalized function if
for every testfunction g ∈ G the sequence of real numbers

lim
n→∞

∫ ∞
−∞

fn(x)g(x) dx (C.24)

exists as a real number (depending on g, of course).

Care is to be taken: although it is the limit of a sequence of ordinary functions, a
generalized function is not an ordinary function. In particular, it is not a function
with a pointwise and explicit meaning. It is only defined by the way its correspond-
ing sequence ( fn) acts under integration. Furthermore, a generalized function may
be defined by many equivalent regular sequences because it is only the limit that
counts.

On the other hand, generalized functions really extend our definition of ordinary
functions. It can be shown, that any reasonably behaving ordinary function is
equivalent to a generalized function, and may be identified to it. Therefore, we re-
tain the symbolism for integration, and write for a generalized function f defined
by the sequence ( fn) and any g ∈ G∫ ∞

−∞
f (x)g(x) dx

def== lim
n→∞

∫ ∞
−∞

fn(x)g(x) dx . (C.25)

C.2.3 The delta function and other examples

A very important generalized function is the delta function δ(x), defined (for ex-
ample) by

δn(x) =
( n

π

)1/2
e−nx2

, or δn(x) = sin nx

πx
e−x2/n2

. (C.26)

In the limit for n →∞ all contributions in the integral except from near x = 0 are
suppressed, such that∫ ∞

−∞
δ(x)g(x) dx = g(0). (C.27)
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The second expression of (C.26) illustrates that it is not necessary for a represen-
tation of δ(x) to vanish pointwise outside x = 0. Highly oscillatory behaviour
outside the origin may be sufficient for the integral to vanish.

A useful identity is

δ(ax) = 1

|a|δ(x), (C.28)

which at the same time shows that a delta function is not necessarily dimensionless,
as it has the inverse dimension of its argument (or put in another way: δ(x)dx is
dimensionless). A generalization of this identity yields, for a sufficiently smooth
function h with h ′ = dh

dx �= 0 at any zero of h, the following result:∫ ∞
−∞
δ(h(x))g(x) dx =

∑
i

g(xi )

|h ′(xi )|, h(xi) = 0 (C.29)

where the summation runs over all the zeros of h. This result may be derived from
the fact that δ(h(x)) is locally, near a zero xi , equivalent to
δ(h ′(xi)(x − xi )), so that δ(h(x)) =∑

δ(x − xi )/|h ′(xi )|.
The sequence

Hn(x) =
(

1
2 tanh(nx)+ 1

2

)
e−x2/n2

defines the Heaviside stepfunction H (x). If the Heaviside generalized function is
used as an ordinary function it has the pointwise definition

H (x) =


0 (x < 0)
1
2 (x = 0)

1 (x > 0)

(C.30)

Any C∞-function f , with algebraic behaviour for |x| → ∞ (for example, poly-
nomials), defines a generalized function (also called f ) via the sequence fn(x) =
f (x) exp(−x2/n2), since for any good g

lim
n→∞

∫ ∞
−∞

fn(x)g(x) dx =
∫ ∞
−∞

f (x)g(x) dx .

Any C∞–function h with algebraic behaviour for |x| → ∞ multiplied by a good
function is a good function, so that the product of such a h with a generalized
function f is well-defined. For example, the equation

x f (x) = 0
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has a meaning in generalized sense, with the solution

f (x) = Cδ(x) (C.31)

which is unique, up to the multiplicative constant C .

C.2.4 Derivatives

Every generalized function f defined by ( fn) has a derivative f ′ defined by ( f ′n),
and also satisfying∫ ∞

−∞
f ′(x)g(x) dx = −

∫ ∞
−∞

f (x)g′(x) dx . (C.32)

Although generalized functions do not have a pointwise meaning, they are not
arbitrarily wild. We have the general form given by the following theorem.

Theorem C.2 (General representation)
A necessary and sufficient condition for f (x) to be a generalized function, is that
there exist a continuous function h(x) and positive numbers r and k such that f (x)
is a generalized r-th order derivative of h(x)

f (x) = dr

dxr
h(x)

while h(x) has the property that

h(x)

(1+ x2)k/2

is bounded on R.

For example:

sign(x) = 1+ 2H (x) = d

dx
|x|, δ(x) = 1

2

d2

dx2
|x|.

By differentiation of the equation xδ(x) = 0 we obtain for the n-th derivative
δ(n)(x) the identity

xnδ(n)(x) = (−1)nn!δ(x).
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C.2.5 Fourier transforms

Every generalized function f defined by ( fn) has a Fourier transform f̂ defined by
( f̂n) which is itself a generalized function. Indeed, since the Fourier transform ĝ
of a good function g is a good function, we have using the convolution theorem a
well-defined∫ ∞

−∞
f̂ (ω)ĝ(ω) dω = lim

n→∞

∫ ∞
−∞

f̂n(ω)ĝ(ω) dω

= 1

2π
lim

n→∞

∫ ∞
−∞

fn(x)g(−x) dx

= 1

2π

∫ ∞
−∞

f (x)g(−x) dx . (C.33)

Examples of Fourier transforms are

1

2π

∫ ∞
−∞
δ(x) e−iωx dx = 1

2π

1

2π

∫ ∞
−∞

e−iωx dx = δ(ω)
(C.34)

1

2π

∫ ∞
−∞

cos(ω0x) e−iωx dx = 1
2δ(ω − ω0)+ 1

2δ(ω + ω0),

1

2π

∫ ∞
−∞

H (x) e−iωx dx = P.V.
( 1

π iω

)
+ 1

2δ(ω) =
1

2π i(ω − i0)

where P.V. denotes “principal value”, which means that under the integration sign
the singularity is to be excluded in the following symmetric way: P.V .

∫∞
−∞ =

limε↓0
∫ −ε
−∞ +

∫∞
ε

. The notation ω − i0 means that the pole ω = 0 is assumed to
belong to the complex upper half plane, similar to (C.17).

If −i cotg(ω) is a causal Fourier transform, the poles ω = nπ belong to the
complex upper half plane. In order to make sure that we approach the poles from
the right side, we write

−i cotg(ω) = 1+ 2 lim
ε↓0

∞∑
n=1

e−2inω−2εn = 1+ 2
∞∑

n=1

e−2inω,
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and obtain for the back transform to time domain∫ ∞
−∞
−i cotg(ω) eiωt dω = 2πδ(t)+ 4π

∞∑
n=1

δ(t − 2n). (C.35)

C.2.6 Products

Products of generalized functions are in general not defined. For example, depend-
ing on the defining sequences of δ(x) and H (x), we may get δ(x)H (x) = Cδ(x)
for any finite C . Therefore, integration along a semi-infinite or finite interval, which
is to be interpreted as a multiplication of the integrand with suitable Heaviside
functions, is not always defined.

Two generalized functions may be multiplied only when either of the two is locally
equivalent to an ordinary function, or as a direct product when they depend on
different variables. Some results are

δ(x)H (x + 1) = δ(x),∫ x0

−x0

δ(x) f (x) dx =
∫ ∞
−∞
δ(x) f (x) dx if x0 > 0,∫ ∞

−∞

∫ ∞
−∞
δ(x)δ(t) f (x, t) dt dx =

∫ ∞
−∞
δ(x)

∫ ∞
−∞
δ(t) f (x, t) dt

dx,∫ ∞
−∞
δ(t − τ)δ(τ) dτ = δ(t).

C.2.7 Higher dimensions and Green’s functions

A generalization to several dimensions is possible [185], and many results are fairly
straightforward after an obvious introduction of multi-dimensional good functions.
For example, we may define a new generalized function f (x)g(y) in R

2 by the
direct product of f (x) and g(y). For the delta function in R

3 this leads to

δ(x) = δ(x)δ(y)δ(z)
Care is required near the singular points of a coordinate transformation. For exam-
ple, provided δ′(r) is considered to be an odd function in r , the 2-D delta function
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δ(x − x0) may be written in polar coordinates ([88, p.306]) as

δ(x − x0) =


δ(r − r0)

r0

∞∑
n=−∞

δ(ϑ − ϑ0 − 2πn) if r0 �= 0,

−δ
′(r)
π

(r ≥ 0) if r0 = 0.

(C.36)

Relevant in the theory of 2-D incompressible potential flow are the following iden-
tities. The line source is a delta function source term in the mass equation:

v = 1

r
(cos θ, sin θ, 0) satisfies ∇·v = 2πδ(x, y). (C.37a)

The line vortex is a delta function type vorticity field:

v = 1

r
(− sin θ, cos θ, 0) satisfies ∇×v = 2πδ(x, y)ez. (C.37b)

A most important application of (more-dimensional) delta functions in the present
context is that they allow a very direct definition of Green’s functions. Classically,
the Green’s function G is defined in a rather complicated way, but in the context of
generalized functions it appears to be just the field resulting from a delta function
source. Consider for example the one dimensional wave equation (c.f. (4.81))

∂2G

∂t2
− c2

0

∂2G

∂x2
= δ(x − y)δ(t − τ).

After Fourier transformation to t and x we obtain

−ω2G̃ + c2
0k2G̃ = 1

4π2
e−iωτ eiky

which yields equation (C.16) (apart from the amplitude) and then, after the de-
scribed transformation back into space and time domain, the Green’s function
given by expression (C.18).

See Appendix E for a table of free field Green’s functions in 1-,2-, and 3-D, for the
Laplace, Helmholtz, wave, and heat equations.

C.2.8 Surface distributions

Of particular interest are the so-called surface distributions δ!(x) defined by the
surface integral∫

R
3
δ!(x)φ(x) dx =

∫
!
φ(x) dσ (C.38)
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where φ is an arbitrary test function, and ! denotes a smooth surface in R
3 with

surface element dσ . In practice, a surface is often defined by an equation S(x) = 0
(section A.3). Near a point x0 on the surface, S(x) varies to leading order only in
the direction of the surface normal eν = ∇S0/|∇S0|,

S(x) = (x − x0)·∇S0 + · · · � |∇S0|ν,
where ν = (x − x0)·eν and S0 indicates evaluation at x0. Since δ! is locally,
after a suitable rotation and transformation of coordinates, equivalent to a one-
dimensional delta function in ν, the coordinate normal to the surface, we have

δ!(x) = δ(ν) = |∇S0|δ(|∇S0|ν) = |∇S0|δ(S). (C.39)

Note that this result is in fact a generalization of formula (C.29). For sufficiently
smooth h we have∫

R
3
δ(h(x))g(x) dx =

∑
i

∫
Si

g(x)
|∇h(x)| dσ (C.40)

where the summation runs over all the surfaces Si defined by the equation h(x) =
0.

This concept of surface distributions has numerous important applications. For ex-
ample, integral theorems like that of Gauss or Green [92], and Reynolds’ Transport
Theorem (section A.1) may be derived very elegantly and efficiently. We show it
for Reynolds’ Theorem and leave Gauss’ theorem as an exercise.

Consider a finite volume V = V(t) with sufficiently smooth surface S = S(t),
moving continuously in space. Introduce a (smooth) function f (x, t) such that

f (x, t)


> 0 if x ∈ V(t),

= 0 if x ∈ S(t),

< 0 if x �∈ V(t),

but otherwise arbitrary. Since ∇ f | f=0 is directed normal inwards into V, the out-
ward normal nS of S is given by (section A.3)

nS(x, t) = − ∇ f

|∇ f |
∣∣∣∣

f=0

.

Let the surface S(t) be parametrized in time and space, by coordinates (t;λ,µ).
Like the auxiliary function f , this parametrization is not unique, but that will ap-
pear to be of no importance. A surface point xS(t) ∈ S (consider λ and µ fixed),
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moving with velocity b = .
xS , remains at the surface for all time, so f (xS(t), t) = 0

for all t , and therefore also its time-derivative, and so

∂ f

∂t
= − .

xS ·∇ f = |∇ f | b·nS.

The variation of a quality F(x, t), integrated over V, is now given by

d

dt

∫
V

F(x, t) dx = d

dt

∫
R

3
H ( f )F(x, t) dx

=
∫
R

3

H ( f )
∂

∂t
F(x, t)+ δ( f )

∂ f

∂t
F(x, t)

dx

=
∫
V

∂

∂t
F(x, t) dx +

∫
S
(b·nS) F(x, t) dσ. (C.41)

where H denotes the Heaviside function, and use is made of equation (C.39). Note
that, although in general b is not unique, its normal component b·nS is unique, in
particular it is independent of the selected function f and parametrization.

C.3 Fourier series

A Fourier series (in complex form) is the following function f (x), defined by the
infinite sequence {cn}∞n=−∞,

f (x) =
∞∑

n=−∞
cn e2π inx/L . (C.42)

If the series converges, f is periodic with period L . For sufficiently well-behaved
functions f the coefficients are given by

cn = 1

L

∫ L

0
f (x) e−2π inx/L dx . (C.43)

Classically, the Fourier series precedes both the Fourier transform and generalized
functions. The classic theory is, however, rather complicated. On the other hand,
Fourier series appear to have a much simpler structure when they are embedded in
the generalized functions, in the following sense.

Fourier series are equivalent to the Fourier transform of periodic general-
ized functions. A generalized function f is said to be periodic, with period L , if
a coordinate shift x + L yields the same generalized function

f (x) = f (x + L).
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We have the following couple of theorems ([109, 225]), telling us when a Fourier
series is a generalized function, and vice versa.

Theorem C.3 (From Fourier series to generalized function)
A Fourier series (C.42) converges9 to a generalized function if and only if the
coefficients cn are of slow growth. This means, that there is a constant N such that
cn = O(|n|N ) for |n| → ∞. The generalized function it defines is periodic and
unique.

Theorem C.4 (From generalized function to Fourier series)
The most general periodic generalized function is just the Fourier series: any pe-
riodic generalized function can be written as a Fourier series with Fourier coeffi-
cients cn, while the Fourier transform is a periodic array of delta functions:

f (x) =
∞∑

n=−∞
cn e2π inx/L, (C.44a)

f̂ (ω) =
∞∑

n=−∞
cnδ(ω − 2πn

L
), (C.44b)

cn = 1

L

∫ ∞
−∞

f (x)U
( x

L

)
e−2π inx/L dx . (C.44c)

Any Fourier series can be differentiated and integrated term by term.
U ∈ C∞ is an auxiliary smoothing function with the following properties:

U (x) = 0 for |x| ≥ 1, U (x)+U (x − 1) = 1 for 0 ≤ x ≤ 1,

but otherwise arbitrary. U is necessary because a generalized function may not be
integrable along a finite interval (for example, when singularities coincide with the
end points).

If we are dealing with a generalized function defined by a periodic absolutely-
integrable ordinary function, then U is not necessary, and the expression for cn

simplifies to the classical form (C.43). Although in such a case the Fourier series
may converge in ordinary sense, this is not guaranteed, and the Fourier series is
still to be interpreted in a generalized sense.

Examples are the “row of delta’s”
∞∑

n=−∞
δ(x − n) =

∞∑
n=−∞

e2π inx = 1+ 2
∞∑

n=1

cos(2πnx), (C.45a)

9As the generalized limit of, for example, fm(x) = exp(−x2/m2)
∑m

n=m cn e2π inx/L .
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with its Fourier transform

1

2π

∞∑
n=−∞

e−iωn =
∞∑

n=−∞
δ(ω − 2πn), (C.45b)

and its N -th derivative

∞∑
n=−∞

δ(N)(x − n) =
∞∑

n=−∞
(2π in)N e2π inx . (C.45c)

Furthermore, the sawtooth with simple discontinuities at x = m (m ∈ Z)

[
1
2 − x

]
1
=

∞∑
n=−∞

′ e2π inx

2π in
=
∞∑

n=1

sin(2πnx)

πn
, (C.45d)

and a sequence of parabola’s, continuous at x = m (m ∈ Z)

1
2

[
x − x2 − 1

6

]
1
=

∞∑
n=−∞

′ e2π inx

(2π in)2
= −

∞∑
n=1

cos(2πnx)

2π2n2
. (C.45e)

∑′ denotes a sum excluding n = 0, [ · ]L denotes the L-periodic continuation of a
function f (x) defined on the interval [0, L]:

[
f (x)

]
L
=

∞∑
n=−∞

B( x
L − n) f (x − nL),

and B denotes the unit block function

B(x) = H (x)− H (x − 1) ≡
{

1 if 0 ≤ x ≤ 1,

0 otherwise.

Apart from an additional x and 1
2 x2, (C.45d) is the first integral and (C.45e) is

the second integral of the row of delta’s of (C.45a). In general it is true that any
generalized Fourier series, with coefficients cn = O(|n|N )(|n| → ∞), is the (N +
2)-th derivative of a continuous function. This shows that there is a limit to the
seriousness of the singularities that these functions can have [109].
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Related examples of some interest are:

− log |2 sin πx| =
∞∑

n=1

cos(2πnx)

n
, (C.46a)

1
2 cotg(πx) =

∞∑
n=1

sin(2πnx), (C.46b)

− 1
2 tan(πx) =

∞∑
n=1

(−1)n sin(2πnx), (C.46c)

π | sin x| = 2−
∞∑

n=1

cos 2nx

n2 − 1
4

. (C.46d)

Until now we have considered only generalized Fourier series because of their
more transparent properties. We have to be very cautious, however, when dealing
in practice with divergent series. No attempt must be made to sum such a series
numerically term by term! Numerical evaluation is only possible for classically
convergent Fourier series. Some of the most important results are the following.

For a given function f we have the following theorem.

Theorem C.5 (Existence of ordinary Fourier series)
If a function f is piecewise smooth10 on the interval [0, L], such that f (x) =
1
2 [ f (x+) + f (x−)], then the Fourier series of f converges for every x to the L-
periodic continuation of f .

For a given Fourier series we have the following theorem.

Theorem C.6 (Continuity of ordinary Fourier series)
If a Fourier series is absolutely convergent, i.e.

∑ |cn| < ∞, then it converges
absolutely and uniformly to a continuous periodic function f , such that cn are just
f ’s Fourier coefficients.

An example of the first theorem is (C.45d). Note that the similar looking (C.46a)
just falls outside this category. Examples of the second are (C.45e) and (C.46d).

10 f is piecewise continuous on [0, L] if there are a finite number of open subintervals
0 < x < x1, . . . , xN−1 < x < L on which f is continuous, while the limits f (0+), f (x1±),
. . . , f (L−) exist. f is piecewise smooth if both f and f ′ are piecewise continuous.
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C.3.1 The Fast Fourier Transform

The standard numerical implementation of the calculation of a Fourier transform
or Fourier coefficient is the Fast Fourier Transform algorithm [25]. This algorithm
calculates for a given complex array {x j }, j = 0, . . . , N − 1 very efficiently (espe-
cially if N is a power of 2) the Discrete Fourier Transform

Xk =
N−1∑
j=0

x j exp(−2π i jk/N), k = 0, . . . , N − 1. (C.47)

A Fourier coefficient (C.43) is calculated by discretizing the integral

cn = 1

L

∫ L

0
f (x) e−2π inx/L dx � 1

N

N−1∑
j=0

f ( j L/N) exp(−2π i jn/N)

and identifying x j = f ( j L/N) and cn = Xn/N .

A Fourier transform (C.1) is determined as follows. Restrict the infinite integral to a
large enough finite interval [− 1

2 T, 1
2 T ], and consider only the values ω = 2πk/T ,

for k = − 1
2 N, . . . , 1

2 N − 1. Then we have

p̂(ω) = 1

2π

∫ ∞
−∞

p(t) e−iωt dt � 1

2π

∫ 1
2 T

− 1
2 T

p(t) e−iωt dt

= 1

2π

∫ 1
2 T

0
p(t) e−iωt dt + 1

2π

∫ T

1
2 T

p(t − T ) e−iωt dt.

If we finally discretize the integrals

p̂
(2πk

T

)
� T

2πN

1
2 N−1∑

j=0

p( j T/N) exp(−2π i jk/N)

+ T

2πN

N−1∑
j= 1

2 N

p( j T/N − T ) exp(−2π i jk/N).
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we obtain the required result by identifying

x j =
{

p( j T/N) if 0 ≤ j ≤ 1
2 N − 1,

p( j T/N − T ) if 1
2 N ≤ j ≤ N − 1,

p̂
(2πk

T

)
= T

2πN

{
Xk+N if − 1

2 N ≤ k ≤ −1,

Xk if 0 ≤ k ≤ 1
2 N − 1.
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D Bessel functions

The Bessel equation for integer m

y′′ + 1

x
y′ +

(
1− m2

x2

)
y = 0 (D.1)

has two independent solutions [217, 1, 47, 61, 113]. Standardized forms are

Jm(x), m-th order ordinary Bessel function of the 1st kind, (D.2a)

Ym(x), m-th order ordinary Bessel function of the 2nd kind. (D.2b)

Jm is regular in x = 0; Ym is singular in x = 0 with branch cut along x < 0; for
m ≥ 0 is:

Jm(x) =
∞∑

k=0

(−1)k( 1
2 x)m+2k

k!(m + k)! (D.3)

Ym(x) = − 1

π

m−1∑
k=0

(m − k − 1)!
k! ( 1

2 x)−m+2k + 2

π
log( 1

2 x)Jm(x)

− 1

π

∞∑
k=0

{
ψ(k + 1)+ ψ(m + k + 1)

} (−1)k( 1
2 x)m+2k

k!(m + k)!

with ψ(1) = −γ, ψ(n) = −γ +
n−1∑
k=1

1

k
,

γ = 0.577215664901532

Jm(−x) = (−1)m Jm(x), (D.4)

Ym(−x) =
(−1)m

(
Ym(x)− 2i Jm(x)

)
, 0<arg(x)≤π,

(−1)m
(

Ym(x)+ 2i Jm(x)
)
, −π<arg(x)≤0.

(D.5)

J−m(x) = (−1)m Jm(x), (D.6)

Y−m(x) = (−1)mYm(x). (D.7)
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Other common independent sets of solutions are the Hankel functions

H (1)
m (x) = Jm(x)+ iYm(x), (D.8a)

H (2)
m (x) = Jm(x)− iYm(x). (D.8b)

Related are the modified Bessel functions of the 1st and 2nd kind

Im(x) = i−m Jm(ix), (D.9a)

Km(x) =
{

1
2π im+1 H (1)

m (ix), −π<arg(x)≤ 1
2π,

,, −2π i(−1)m Im(x),
1
2π<arg(x)≤ π, (D.9b)

=
{

1
2π(−i)m+1 H (2)

m (−ix), − 1
2π<arg(x)≤ π,

,, +2π i(−1)m Im(x), −π <arg(x)≤− 1
2π,

(D.9c)

satisfying

y′′ + 1

x
y′ −

(
1+ m2

x2

)
y = 0 (D.10)

Im is regular in x = 0, Km is singular in x = 0 with branch cut along x < 0.

Im(−x) = (−1)m Im(x) (D.11)

Km(−x) =
{
(−1)m Km(x)+ π i Im(x), 0<arg(x)≤ π,
(−1)m Km(x)− π i Im(x), −π<arg(x)≤0,

(D.12)

I−m(x) = Im(x), (D.13)

K−m(x) = Km(x). (D.14)

Wronskians (with prime ′ denoting derivative):

Jm(x)Y ′m(x)− Ym(x)J ′m(x) = 2/πx (D.15)

H (1)
m (x)H

(2)
m
′(x)− H (2)

m (x)H
(1)
m
′(x) = −4i/πx (D.16)

Im(x)K ′m(x)− Km(x)I ′m(x) = −1/x (D.17)

Jm(x)Ym+1(x)− Ym(x)Jm+1(x) = −2/πx (D.18)

Im(x)Km+1(x)+ Km(x)Im+1(x) = 1/x (D.19)

Jm(x) and J ′m(x) have an infinite number of real zeros, all of which are simple with
the possible exception of x = 0. The µ-th positive (�= 0) zeros are denoted by jmµ
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and j ′mµ respectively, except that x = 0 is counted as the first zero of J ′0: j ′01 = 0.
It follows that j ′0,µ = j1,µ−1.

Asymptotically the zeros behave like

jmµ � (µ+ 1
2 m − 1

4 )π + O(µ−1) (µ→∞) (D.20a)

j ′mµ � (µ+ 1
2 m − 3

4 )π + O(µ−1) (µ→∞) (D.20b)

j ′m1 � m + 0.8086 m1/3 + O(m−1/3) (m →∞). (D.20c)

Not only asymptotically but in general it is true that j ′m1 ≥ m.

Asymptotic behaviour for x → 0:

Jm(x) � ( 1
2 x)m/m! , (D.21)

Y0(x) � 2 log(x)/π, (D.22)

Ym(x) � −(m − 1)! ( 1
2 x)−m/π, (D.23)

H (1,2)
0 (x) � ±2i log(x)/π, (D.24)

H (1,2)
m (x) � ∓ i(m − 1)!( 1

2 x)−m/π, (D.25)

Im(x) � ( 1
2 x)m/m! , (D.26)

K0(x) � − log(x), (D.27)

Km(x) � 1
2 (m − 1)! ( 1

2 x)−m , (D.28)

Asymptotic behaviour for |x| → ∞ and m fixed:

Jm(x) � ( 1
2πx)−

1
2 cos(x − 1

2mπ − 1
4π), (D.29)

Ym(x) � ( 1
2πx)−

1
2 sin(x − 1

2 mπ − 1
4π), (D.30)

H (1,2)
m (x) � ( 1

2πx)−
1
2 exp[± i(x − 1

2mπ − 1
4π)], (D.31)

Im(x) � (2πx)−
1
2 ex , (| arg(x)| < 1

2π), (D.32)

Km(x) � (2x/π)−
1
2 e−x , (| arg(x)| < 3

2π). (D.33)
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Asymptotic behaviour for |x| → ∞ and m2/x fixed:

Jm(x) � ( 1
2πx)−

1
2 cos

(
x − 1

2πm − 1
4π + 1

2 (m
2 − 1

4 )x
−1
)
, (D.34)

Ym(x) � ( 1
2πx)−

1
2 sin

(
x − 1

2πm − 1
4π + 1

2(m
2 − 1

4 )x
−1
)
, (D.35)

H (1,2)
m (x) � ( 1

2πx)−
1
2 exp[± i(x − 1

2mπ − 1
4π + 1

2 (m
2 − 1

4)x
−1)], (D.36)

with absolute accuracy of <1% along x > 2+ 2m + 1
13 m1.5 for any 0 ≤ m ≤ 100.

The corresponding approximating zero’s of Jm and J ′m (and similarly for Ym) are
easily found to be

jmµ � 1
2(µ+ 1

2m − 1
4)π + 1

2

√
(µ+ 1

2 m − 1
4 )

2π2 − 2m2 + 1
2 , (D.37)

j ′mµ � 1
2(µ+ 1

2m − 3
4)π + 1

2

√
(µ+ 1

2 m − 3
4 )

2π2 − 2m2 + 1
2 . (D.38)

Asymptotic behaviour for m →∞:

Jm(x) � (2πm)−
1
2 (ex/2m)m, (D.39)

Jm(m) � 2
1
3 /(3

2
3�( 2

3)m
1
3 ), (D.40)

Jm(mx) �
{
( 1

2πmζ+)−
1
2 cos(mζ+ − m arctan ζ+ − 1

4π),

(2πmζ−)−
1
2 exp(mζ− − m artanh ζ−),

(D.41)

Ym(x) � −( 1
2πm)−

1
2 (ex/2m)−m , (D.42)

Ym(m) � −2
1
3 /(3

1
6�( 2

3)m
1
3 ), (D.43)

Ym(mx) �
{
( 1

2πmζ+)−
1
2 sin(mζ+ − m arctan ζ+ − 1

4π),

−( 1
2πmζ−)−

1
2 exp(−mζ− + m artanh ζ−),

(D.44)

where ζ+ =
√

x2 − 1, valid for x > 1, and ζ− =
√

1− x2, valid for 0 < x < 1.
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Important recurrence relations are

Jm−1(x)+ Jm+1(x) = 2m
x Jm(x), (D.45)

Jm−1(x)− Jm+1(x) = 2J ′m(x), (D.46)

Ym−1(x)+ Ym+1(x) = 2m
x Ym(x), (D.47)

Ym−1(x)− Ym+1(x) = 2Y ′m(x), (D.48)

Im−1(x)+ Im+1(x) = 2I ′m(x), (D.49)

Im−1(x)− Im+1(x) = 2m
x Im(x), (D.50)

Km−1(x)+ Km+1(x) = −2K ′m(x), (D.51)

Km−1(x)− Km+1(x) = −2m
x Km(x). (D.52)

In particular:

J ′0(x) = −J1(x), Y ′0(x) = −Y1(x),

I ′0(x) = I1(x), K ′0(x) = −K1(x).
(D.53)

Some useful relations involving series are

eix cosϑ =
∞∑

m=−∞
im Jm(x) eimϑ, (D.54)

J0(k R) =
∞∑

m=−∞
eim(ϑ−ϕ) Jm(kr)Jm(k�), (D.55)

where: R2 = r2 + �2 − 2r� cos(ϑ − ϕ),

1

r0
δ(r − r0) =



∞∑
µ=1

Jm( j ′mµr0)Jm( j ′mµr)
1
2(1− m2/j ′2mµ)Jm( j ′mµ)2

(0 < r, r0 < 1),

∞∑
µ=1

Jm( jmµr0)Jm( jmµr)
1
2 J ′m( jmµ)2

(0 < r, r0 < 1).
(D.56)
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Relations involving integrals:∫
x Cm(αx)C̃m(βx) dx = (D.57)

x

α2 − β2

{
βCm(αx)C̃

′
m(βx) − αC ′m(αx)C̃m(βx)

}
,∫

x Cm(αx)C̃m(αx) dx = (D.58)

1
2 (x

2 − m2

α2 )Cm(αx)C̃m(αx)+ 1
2 x2 C ′m(αx)C̃

′
m(αx) ,

where Cm, C̃m is any linear combination of Jm,Ym, H (1)
m and H (2)

m ,∫
xDm(αx)D̃m(βx) dx = (D.59)

−x

α2 − β2

{
βDm(αx)D̃

′
m(βx)− αD ′m(αx)D̃m(βx)

}
,∫

xDm(αx)D̃m(αx) dx = (D.60)

1
2 (x

2 + m2

α2 )Dm(αx)D̃m(αx)− 1
2 x2D ′m(αx)D̃

′
m(αx),

where Dm, D̃m is any linear combination of Im and Km,∫ π

0
eix cosϑ cos(mϑ) dϑ = 1

2

∫ π

−π
eix cosϑ+imϑ dϑ = π im Jm(x), (D.61)

1
2π

∫ π

−π
e−imϑ+ix sinϑ dϑ = Jm(x), (D.62)∫ ∞

0

α

γ
e−iγ |z| J0(�α) dα = e−ikr

−ir
,

{
γ=
√

k2 − α2, Im(γ )≤0,
r=
√
�2 + z2, k>0,

(D.63)∫ ∞
−∞

e±ix cosh y dy = ±π i H (1,2)
0 (x), (D.64)∫ ∞

−∞
1

γ
e−iαx−iγ |y| dα = πH (2)

0 (kr),

{
γ=
√

k2 − α2, Im(γ )≤0,
r=
√

x2 + y2, k>0,
(D.65)

∫∫ ∞
−∞

1

γ
e−iαx−iβy−iγ |z| dαdβ = 2π

e−ikr

−ir
,


γ=

√
k2 − α2 − β2,

Im(γ )≤0, k>0,
r=
√

x2 + y2 + z2,
(D.66)

∫ ∞−i0

−∞−i0
H (2)

0 (ωr) eiωt dω = 4i
H (t − r)√

t2 − r2
, (D.67)

∫ ∞
0

x J0(xr)

x2 − k2
dx =

{
1
2π i H (1)

0 (kr) (Im(k) > 0),

− 1
2π i H (2)

0 (kr) (Im(k) < 0),
(D.68)
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∫ ∞
0

x Jm(αx)Jm(βx) dx = δ(α − β)√
αβ

(α, β > 0), (D.69)∫ ∞
0

xYm(αx)Jm(βx) dx = 2

π

1

α2 − β2

(
β

α

)m

(Princ. Val.), (D.70)∫ ∞
0

J0(αx) sin(βx) dx = H (β − α)√
β2 − α2

, (α, β > 0) (D.71)∫ ∞
0

J0(αx) cos(βx) dx = H (α − β)√
α2 − β2

, (α, β > 0) (D.72)

∫ ∞
0

Y0(αx) sin(βx) dx =


2

π

1√
α2 − β2

arcsin(β
α
) (0<β<α),

2

π

−1√
β2 − α2

arcosh(β
α
) (0<α<β),

(D.73)

∫ ∞
0

Y0(αx) cos(βx) dx = −H (β − α)√
β2 − α2

, (α, β > 0) (D.74)∫ ∞
0

K0(αx) sin(βx) dx = 1√
α2 + β2

arsinh(β
α
), (α, β > 0) (D.75)∫ ∞

0
K0(αx) cos(βx) dx =

1
2π√
α2 + β2

(α, β > 0) (D.76)

Related to Bessel functions of order 1
3 are the Airy functions Ai and Bi [1], given

by

Ai(x) = 1

π

∫ ∞
0

cos( 1
3 t3 + xt) dt (D.77)

Bi(x) = 1

π

∫ ∞
0

[
exp(− 1

3 t3 + xt)+ sin( 1
3 t3 + xt)

]
dt (D.78)

They are solutions of

y′′ − xy = 0, (D.79)
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with the following asymptotic behaviour (introduce ζ = 2
3 |x|3/2)

Ai(x) �


cos(ζ − 1

4π)√
π |x|1/4 (x → −∞),

e−ζ

2
√
π x1/4

(x →∞),
(D.80)

Bi(x) �


cos(ζ + 1

4π)√
π |x|1/4 (x → −∞),
eζ√
π x1/4

(x →∞).
(D.81)

0

0.5

1

2 4 6 8 10 12 14

Figure D.1 Bessel function Jn(x) as function of order and argument.
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E Free field Green’s functions

Some relevant Green’s functions for the Laplace equation, the reduced wave equa-
tion (Helmholtz equation), the wave equation, and the diffusion equation (heat
equation) are summarized in the table below for 1-, 2-, and 3-dimensional infinite
space. The boundary conditions applied are (depending on the equation): symme-
try, the function or its derivative vanishing at infinity, outward radiating (assuming
a eiωt convention) and causality (vanishing before t = 0).

Equation 1-D 2-D 3-D

∇2G = δ(x) 1

2
|x| 1

2π
log R − 1

4πr

∇2G + k2G = δ(x) i

2k
e−ik|x | i

4
H (2)

0 (k R) −e−ikr

4πr

∂2G

∂t2
− c2∇2G = δ(x)δ(t) 1

2c
H (t − |x|/c) 1

2πc2

H (t − R/c)√
t2 − R2/c2

δ(t − r/c)

4πc2r

∂G

∂t
− α∇2G = δ(x)δ(t) H (t) e−x2/4αt

(4παt)1/2
H (t) e−R2/4αt

4παt

H (t) e−r2/4αt

(4παt)3/2

Notation: R =
√

x2 + y2, r =
√

x2 + y2 + z2.



F Summary of equations for fluid motion

For general reference we will describe here a large number of possible acoustic
models, systematically derived from he compressible Navier-Stokes equations, un-
der the assumptions of absence of friction and thermal condition, and the fluid
being a perfect gas. The flow is described by a stationary mean flow and small per-
turbations, upon which linearization and Fourier time-analysis is possible. Further
simplifications are considered based on axi-symmetric geometry and mean flow.

F.1 Conservation laws and constitutive equations

The original laws of mass, momentum and energy conservation, written in terms
of pressure p, density ρ, velocity vector v, scalar velocity v = |v|, viscous stress
tensor τ , internal energy e, and heat flux vector q, are given by

mass: ∂
∂t ρ +∇·(ρv) = 0 (F.1)

momentum: ∂
∂t (ρv) +∇·(ρvv) = −∇ p +∇·τ (F.2)

energy: ∂
∂t (ρE)+∇·(ρEv) = −∇·q −∇·(pv)+∇·(τv) (F.3)

while

E = e + 1
2v

2. (F.4)

It is often convenient to introduce enthalpy or heat function

i = e + p

ρ
, (F.5)

or entropy s and temperature T via the fundamental law of thermodynamics for a
reversible process

T ds = de + pdρ−1 = di − ρ−1dp. (F.6)
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With d
dt = ∂

∂t +v ·∇ for the convective derivative, the above conservation laws may
be reduced to

mass: d
dt ρ = −ρ∇·v (F.7a)

momentum: ρ d
dt v = −∇ p + ∇·τ (F.7b)

energy : ρ d
dt e = −∇·q − p∇·v + τ :∇v (F.7c)

ρ d
dt i = d

dt p −∇·q + τ :∇v (F.7d)

ρT d
dt s = −∇·q + τ :∇v. (F.7e)

For acoustic applications the entropy form (F.7e) is the most convenient.

For an ideal gas we have the following relations

p = ρRT, de = CV dT, di = CPdT (F.8a,b,c)

where CV is the heat capacity or specific heat at constant volume, CP is the heat
capacity or specific heat at constant pressure [102]. CV = CV (T ) and CP = CP(T )
are in general functions of temperature. R is the specific gas constant and γ the
specific-heat ratio, which are practically constant and given by (the figures refer to
air)

R = CP − CV = 286.73 J/kg K, γ = CP

CV
= 1.402 (F.9a,b)

From equation (F.6) it then follows for an ideal gas that

ds = CV
dp

p
− CP

dρ

ρ
(F.10)

while isentropic perturbations (ds = 0), like sound, propagate with the sound speed
c given by

c2 =
(∂p

∂ρ

)
s
= γ p

ρ
= γ RT . (F.11)

For a perfect gas, the specific heats are constant (independent of T ), and we can
integrate

e = CV T + einit, i = CP T + iinit, s = CV log p − CP log ρ + sinit.

(F.12a,b,c)

The integration “constants” einit, iinit and sinit refer to the initial situation of each
particle. So this result is only useful if we start with a fluid of uniform thermody-
namical properties, or if we are able to trace back the pathlines (or streamlines for
a steady flow).
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F.2 Acoustic approximation

F.2.1 Inviscid and isentropic

In the acoustic realm we will consider, the viscous or turbulent stress terms will be
assumed to play a role only in an aerodynamic source region, while any perturba-
tion is too fast to be affected by thermal conduction. Therefore, for the applications
of acoustic propagation we will ignore viscous shear stress (τ ) and thermal con-
duction (q). In particular, this is obtained as follows. We make dimensionless by
scaling

x := L x, v := v0v, t := L

v0
t, ρ := ρ0ρ,

dp := ρ0v
2
0dp, τ := µv0

L
τ , q := κ�T

L
q,

T := T0T, dT := �T dT, ds := CP�T

T0
ds

to get
d
dtρ = −ρ∇·v (F.13a)

ρ d
dt v = −∇ p + 1

Re
∇·τ (F.13b)

ρT d
dt s = − 1

Pe
∇·q + Ec

Re
τ :∇v, (F.13c)

where Re = ρ0v0L/µ denotes the Reynolds number, Pe = ρ0CPv0L/κ the Peclet
number, and Ec = v2

0/CP�T the Eckert number. If the Reynolds number tends to
infinity, usually also the Peclet number does, because Pe = Pr Re and the Prandtl
number Pr is for most fluids and gases of order 1. Then, provided the Eckert num-
ber is not large, we obtain

d
dt ρ = −ρ∇·v (F.14a)

ρ d
dt v = −∇ p (F.14b)
d
dt s = 0 (F.14c)

which means that entropy remains constant, and thus dh = ρ−1dp, along stream-
lines.

Furthermore, we will assume the gas to be perfect, with the following thermody-
namical closure relations

ds = CV
dp

p
− CP

dρ

ρ
, c2 = γ p

ρ
. (F.14d)
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By substituting equation (F.14d) into equation (F.14c) we obtain

d
dt p = c2 d

dt ρ. (F.14e)

If the flow is initially homentropic (sinit is uniformly constant) then

p ∝ ργ es/CV (F.14f)

If the flow is homentropic (s is uniformly constant) then

p ∝ ργ (F.14g)

F.2.2 Perturbations of a mean flow

When we have a stationary mean flow with instationary perturbations, given by

v = v0 + v′, p = p0 + p′, ρ = ρ0 + ρ ′, s = s0 + s′ (F.15)

and linearize for small amplitude, we obtain for the mean flow

∇·(ρ0v0) = 0 (F.16a)

ρ0(v0 ·∇)v0 = −∇ p0 (F.16b)

(v0 ·∇)s0 = 0 (F.16c)

while

ds0 = CV
dp0

p0
− CP

dρ0

ρ0
, c2

0 =
γ p0

ρ0
(F.16d)

and the perturbations

∂
∂t ρ
′ + ∇·(v0ρ

′ + v′ρ0) = 0 (F.17a)

ρ0
(
∂
∂t + v0 ·∇)v′ + ρ0

(
v′ ·∇)v0 + ρ ′(v0 ·∇)v0 = −∇ p′ (F.17b)

( ∂
∂t + v0 ·∇)s′ + v′ ·∇s0 = 0 (F.17c)

while, assuming s′init = 0,

s′ = CV

p0
p′ − CP

ρ0
ρ ′ = CV

p0

(
p′ − c2

0ρ
′), c′ = 1

2c0

( p′

p0
− ρ

′

ρ0

)
. (F.17d)

The expression for c′ usually serves no purpose.
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From equation (F.14e) we get for the mean flow v0 ·∇ p0 = c2
0v0 ·∇ρ0, and for the

perturbations an equation, equivalent to (F.17c) and (F.17d),

∂
∂t p′ + v0 ·∇ p′ + v′ ·∇ p0

= c2
0

(
∂
∂t ρ
′ + v0 ·∇ρ ′ + v′ ·∇ρ0

)
+ c2

0

(
v0 ·∇ρ0

)( p′
p0
− ρ′

ρ0

)
. (F.18)

If the mean flow is homentropic (s0 = constant), we have ∇ p0 = c2
0∇ρ0 while the

perturbations are isentropic along streamlines.

If the perturbations are entirely isentropic (s′ ≡ 0), for example when v0 = 0 and
s0 = constant or when the flow is homentropic (satisfying equation F.14g), the
pressure and density perturbations are related by the usual

p′ = c2
0ρ
′. (F.19)

F.2.3 Myers’ Energy Corollary

Myers’ definition of energy [138, 139, 140] for unsteady disturbances propagating
in moving fluid media is both consistent with the general conservation law of fluid
energy and with the order of approximation in the linear model adopted to describe
the disturbances. When the mass and momentum equations (F.1,F.2) and the gen-
eral energy conservation law (F.3) for fluid motion is expanded to quadratic order,
this 2nd order energy term may be reduced to the following conservation law for
perturbation energy density E , energy flux I , and dissipation D

∂
∂t E +∇· I = −D (F.20)

where (for simplicity we neglect viscous stress and heat conduction)

E = p′2

2ρ0c2
0

+ 1
2ρ0v

′2 + ρ ′v0 ·v′ + ρ0T0s′2

2Cp
, (F.21a)

I = (
ρ0v

′ + ρ ′v0
)( p′

ρ0
+ v0 ·v′

)
+ ρ0v0T ′s′, (F.21b)

D = −ρ0v0 ·(ω′×v′)− ρ ′v′ ·(ω0×v0
)

+ s′
(
ρ0v

′ + ρ ′v0
)·∇T0 − s′ρ0v0 ·∇T ′. (F.21c)

while the vorticity vector is denoted by ∇×v = ω = ω0 + ω′. Without mean
flow this definition reduces to the traditional one. Note that, according to this def-
inition, acoustic energy is entirely conserved in homentropic, irrotational flow. In
vortical flow, the interaction with the mean flow may constitute a source or a sink
of acoustic energy.
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F.2.4 Zero mean flow

Without mean flow, such that v0 = ∇ p0 = 0, the equations may be reduced to

∂2

∂t2 p′ − ∇·(c2
0∇ p′

) = 0. (F.22)

F.2.5 Time harmonic

When the perturbations are time-harmonic, given by

v′ = Re(v̂ eiωt ), p′ = Re( p̂ eiωt), ρ ′ = Re(ρ̂ eiωt), s′ = Re(ŝ eiωt), (F.23)

we have in the usual complex notation

iωρ̂ +∇·(v0ρ̂ + v̂ρ0
) = 0 (F.24a)

ρ0
(
iω + v0 ·∇)v̂ + ρ0

(
v̂ ·∇)v0 + ρ̂

(
v0 ·∇)v0 = −∇ p̂ (F.24b)(

iω + v0 ·∇)ŝ + v̂ ·∇s0 = 0 (F.24c)

ŝ = Cv
p0

(
p̂ − c2

0ρ̂
)
. (F.24d)

F.2.6 Irrotational isentropic flow

When the flow is irrotational and isentropic everywhere (homentropic), we can in-
troduce a potential for the velocity, where v = ∇φ, and express p as a function of ρ
only, such that we can integrate the momentum equation, and obtain the important
simplification

∂

∂t
φ + 1

2v
2 + c2

γ − 1
= constant,

p

ργ
= constant. (F.25)

For mean flow with harmonic perturbation, where φ = φ0 + Re(φ̂ eiωt), we have
then for the mean flow

1
2v

2
0 +

c2
0

γ − 1
= constant,

∇·(ρ0v0) = 0,
p0

ρ
γ

0

= constant
(F.26a)
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and for the acoustic perturbations(
iω + v0 ·∇)ρ̂ + ρ̂∇·v0 +∇·(ρ0∇φ̂

) = 0,

ρ0
(
iω + v0 ·∇)φ̂ + p̂ = 0, p̂ = c2

0ρ̂.
(F.26b)

These last equations are further simplified (eliminate p̂ and ρ̂ and use the fact that
∇·(ρ0v0) = 0) to the rather general convected wave equation

ρ−1
0 ∇·(ρ0∇φ̂

)− (
iω + v0 ·∇)[c−2

0

(
iω + v0 ·∇)φ̂] = 0. (F.27)

F.2.7 Uniform mean flow

The simplest, but therefore probably most important configuration with mean flow,
is the one with a uniform mean flow.

Axial mean velocity u0, mean pressure p0, density ρ0 and sound speed c0 are con-
stants, so we have(

iω + u0
∂
∂x

)
ρ̂ + ρ0∇· v̂ = 0, (F.28a)

ρ0
(
iω + u0

∂
∂x

)
v̂ + ∇ p̂ = 0, (F.28b)(

iω + u0
∂
∂x

)(
p̂ − c2

0ρ̂
) = 0. (F.28c)

Equation (F.28c) shows that entropy perturbations are just convected by the mean
flow. Without sources of entropy, the field is isentropic if we start with zero entropy.

We may split the perturbation velocity into a vortical part and an irrotational part
(see equation 1.22) by introducing the vector potential (stream function) ψ̂ and
scalar potential φ̂ as follows

v̂ = ∇×ψ̂ +∇φ̂, (F.29)

If desired, the arbitrariness in ψ̂ (we may add any ∇ f , since ∇×∇ f ≡ 0) may be
removed by adding the gauge condition ∇·ψ̂ = 0, such that the vorticity is given
by

ω̂ = ∇×v̂ = ∇(∇·ψ̂)−∇2ψ̂ = −∇2ψ̂ . (F.30)

By taking the curl of equation (F.28b) we can eliminate p and φ to produce an
equation for the vorticity:

−(iω + u0
∂
∂x

)∇2ψ̂ = (
iω + u0

∂
∂x

)
ω̂ = 0. (F.31)
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This shows that vorticity perturbations are just convected by the mean flow. With-
out sources of vorticity, the field is irrotational if we start without vorticity.

Indeed, vorticity and pressur/density perturbations are decoupled. Since the diver-
gence of a curl is zero, ∇· v̂ = ∇·(∇×ψ̂ +∇φ̂) = ∇2φ̂, equation (F.28a) becomes(

iω + u0
∂
∂x

)
ρ̂ + ρ0∇2φ̂ = 0 (F.32)

By taking the divergence of equation (F.28b), and using equations (F.28a,F.28c),
we can eliminate φ and ρ to obtain the convected reduced wave equation for the
pressure

c2
0∇2 p̂ − (

iω + u0
∂
∂x

)2
p̂ = 0. (F.33)

Again, we note that we did not assume isentropy or irrotationality.

With some care, especially taking due notice of any singular edge behaviour, this
equation may be transformed to the ordinary reduced wave equation

c2
0∇2 p̃ +�2 p̃ = 0 (F.34)

by introducing

p̂(x, r, θ;ω) = p̃(X, r, θ;�) exp(i �M
c0

X), (F.35)

where x = βX, ω = β�, M = u0

c0
, β =

√
1− M2.

RienstraHirschberg 19 July 2006 20:00



G Answers to exercises.

Chapter 1
d) Only if thermodynamic equilibrium prevails.

e) The pressure on the piston p1 can be related to the atmospheric pressure p2 in the free jet by
using the unsteady Bernoulli equation (1.31b) applied to an incompressible fluid (ρ = ρ0):
∂�φ

∂t
+ 1

2
(v2

2 − v2
1)+

p2 − p1

ρ0
= 0.

By neglecting the non-uniformity of the flow we have

�φ =
∫ 2

1
v·d� � v1
1 + v2
2.

Using the mass conservation law (1.18) for an incompressible fluid we find by continuity of the
volume flux

A1v1 = A2v2.

Hence, the equation of Bernoulli becomes, with v1 = at ,
p1 − p2

ρ0
= a

(

1 + A1

A2

2

)
+ 1

2

(( A1

A2

)2 − 1
)
(at)2.

At t = 0 we have a ratio of the pressure drop, determined by the ratio of the potential difference,
of
v1
1

v2
2
= A1
1

A2
2
.

Chapter 2
a) A depth of 100 m corresponds to a pressure of 10 bar, hence an air density ρg which is ten times

higher than at 1bar. Following (2.43) we have a speed of sound of 75m/s. Note that ρgc2
g = γ p

so that c depends only on γ and not on other gas properties.

c) Mathematically, any sound speed can be used, but the simple physical meaning only appears
when we choose the value that prevails at the listener’s position.

d) Not necessarily. In an isentropic flow is Ds
Dt = 0, but∇·(vρ0)) vanishes only for an homentropic

flow.

e) No, p′ is more appropriate.

f) Certainly not.

g) Yes.

h) No. The fluid should be stagnant and uniform (quiescent).

i) No. ρc2 = γ p so that ρc depends also on the temperature because c = √γ RT .
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Chapter C
a) Every point of the line source has a different distance, and therefore different travel time, to the

observer. Note the tail of the 2-D wave-equation Green’s function (Appendix E) (2πc2)−1 H(t−
R/c)/

√
t2 − R2/c2.

b) The field P of one point source is given by (see Appendix E)
Ptt − c2∇2 P = δ(t − τ)δ(x − x0)δ(y − y0)δ(z) with solution
P = δ(t − τ − r0/c)/4πc2r0 where r0 = {(x − x0)

2 + (y − y0)
2 + z2}1/2.

Integrate over all x0, y0, introduce x0 = x + {r2
0 − z2}1/2 cos θ0 and

y0 = y + {r2
0 − z2}1/2 sin θ0, and obtain the total field

p = ∫∫
P dx0dy0 = 2π

4πc2

∫∞
|z| δ(t − τ − r0/c) dr0 = (2c)−1 H(t − τ − |z|/c).

This could have been anticipated from the fact that the problem is really one dimensional.

c) From Appendix E we find the total field

p(x, y, z) = 1
4 i
∞∑

n=−∞
H (2)0 (k Rn) � 1

4 i
∞∑

n=−∞
( 1

2πk Rn)
− 1

2 exp( 1
4π i − ik Rn)

where Rn = ((x − nd)2 + y2)
1
2 = (r2 − 2rnd cos θ + n2d2)

1
2 .

Consider the sources satisfying −r � nd � r , such that

Rn � r − nd cos θ (r →∞).
This part of the series looks like

· · · � 1
4 i
∑
( 1

2πkr)− 1
2 exp( 1

4π i − ikr + iknd cos θ)

and grows linearly with the number of terms if
exp(iknd cos θ) = 1, or kd cos θ = 2πm.

d) The condition is now exp(−iπn + iknd cos θ) = 1, or kd cos θ = (2m + 1).

e) If we make x dimensionless by a length scale L , we have δ(x) = δ( x
L L) = 1

L δ(
x
L ). So the

dimension of δ(x) is (length)−1.

f) Multiply by a test function φ(x, y) and integrate

· · · = −
∫∫

1

r
φr dx dy = −

∫ 2π

0

∫ ∞
0
φr dr dθ = 2πφ(0, 0).

g) Let S be given by an equation f (x) = 0, such that f (x) > 0 if and only if x ∈ V . The outward
normal n is then given by n = −(∇ f/|∇ f |) f=0. Since H( f )v vanishes outside V , we have

0 =
∫
∇·H( f )v dx =

∫ H( f )∇·v + δ( f ) v·∇ f
dx

=
∫

V
∇·v dx −

∫
S
v·n dσ.

h) Only the terms contribute which satisfy 0 < 2nL ≤ c0t , so we obtain

(2+ R)g(t) = R f (t)+ 2
�c0t/2L�∑

n=1

(
f
(
t − 2nL

c0

)− g
(
t − 2nL

c0

))
.

i) p̂(x) = e−ikx +R eikx . If p̂(x0) = 0, we have R = − e−2ikx0 .
Since p̂(x0) = 0 and v̂(x0) �= 0 we have simply Z = 0.
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j) v̂(x) = (ρ0c0)
−1(e−ikx −R eikx ). If v̂(x0) = 0, we have R = e−2ikx0 .

Since v̂(x0) = 0 and p̂(x0) �= 0 we have simply Z = ∞.

k) With p̂(x) = e−ikx +R eikx and v̂(x) = (ρ0c0)
−1(e−ikx −R eikx ) we have R = (Z0 −

ρ0c0)/(Z0 + ρ0c0), so

ZL = ρ0c0
eikL +R e−ikL

eikL −R e−ikL
= ρ0c0

Z0 + iρ0c0 tan(kL)

ρ0c0 + i Z0 tan(kL)
.

l) If R > 0, m ≥ 0, K ≥ 0, the zeros of Z(ω) = R+ iωm− i K/ω belong to the upper half plane.
If R = 0 the zeros are real, and have to be counted to the upper half plane. The same for the
real pole ω = 0.

z(t) = 2π(Rδ(t)+ mδ′(t)+ K H(t)), y(t) = 2πH(t)(α e−αt −β e−βt )√
R2 − 4mK

,

where α,β = (R ±
√

R2 − 4mK )/2m.

Chapter 4
a) For a wave p′ = G(x + c0t) corresponding to a C− characteristic propagating in a uniform

region with (ρ0, c0) and u0 = 0 the C+ characteristics carry the message: p′ + ρ0c0u′ =
0 in the entire wave region. This implies that p′ = −ρ0c0u′ along any C− characteristic.
Alternatively, we have from the momentum conservation law: ρ0

∂
∂t u′ = − ∂

∂x p′ = − 1
c0
∂
∂t p′

because p′ is a function of (x + c0t) along a C− characteristic. Integration with respect to time
yields: ρ0u′ = −p′/c0.

b) The piston induces the pressures p′I = ρ0,Ic0,Iu
′ and p′II = −ρ0,IIc0,IIu

′. The force amplitude
is: F̂ = S(ρIcI + ρIIcII)ωa = 9.15 N. As p′I − p′II = 915 Pa � ρ0c2

0 � 105 Pa we can use a
linear theory.

c) The flow perturbation u′ is such that the total flow velocity u0 + u′ = 0 at the closed valve.
Hence we have p1 = −ρwcwu′ = ρwcwu0 and p1 = −p2. For u0 = 0.01 m/s we find
p1 = −p2 = 1.5 × 104 Pa. For u0 = 1 m/s we find p1 = 1.5 × 106 Pa. The pressure p2
can reach −15 bar if there is no cavitation. Otherwise it is limited to the vapour pressure of the
water.

d) v j = 2cw(A/S)(1−√
1− (u0/cw)) � u0 A/S. �p � 1

2ρw(u0 A/S)2.

e) Energy conservation implies: A1 p′1u′1 = A2 p′2u′2, while mass conservation implies: A1u′1 =
A2u′2. Substitution of the mass conservation law in the energy conservation law yields: p′1 =
p′2.

f) R1,2 = T1,2 − 1 = (ρ2c2 − ρ1c1)/(ρ2c2 + ρ1c1).
Rair,water = 0.99945, Tair,water = 1.99945.
Rwater,air = −0.9989, Twater,air = 0.0011.

g) T1 − T2 = 30 K, ρ1c1/ρ2c2 =
√

T2/T1 = 1.05.
R1,2 = −0.03, T1,2 = 0.97.

h) (I−1 /I+1 ) = R2
1,2 = (ρ1c1 − ρ2c2)

2/(ρ1c1 + ρ2c2)
2,

(p+1 + p−1 )(p
+
1 − p−1 )/ρ1c1 = I+1 − I−1 = I+2 , (I+2 /I+1 ) = 1− (I−1 /I+1 ).

i) R1,2 = 0.0256, p+1 = (ρ1c1û p)/(1− R1,2 e−2ikL ), p−1 = R1,2 p+1 e−2ikL ,

p+2 = p+1 e−ikL +p−1 eikL .

j) T1,2 = 2A1/(A1 + A2), R1,2 = 1− T1,2 = (A1 − A2)/(A1 + A2).
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k) T1,2 = 2ρ2c2 A1/(ρ1c1 A2 + ρ2c2 A2), R1,2 = 1− T1,2.

l) lim
A2/A1→0

R1,2 = 1, lim
A2/A1→∞

R1,2 = −1.

m) For an orifice with wall thickness L and cross-sectional area Ad in a pipe of cross-sectional area
A p we have: R = p−1 /p+1 =
ik(L + 2δ)A p/[2Ad + ik(L + 2δ)A p], where k = ω/c0, δ � 8

3π
√

Ad/π .

p) Without mean flow (u0 = 0):

• At low amplitudes, when linear theory is valid, friction is negligible when δ2
v = 2ν/ω � Ad .

• At large amplitudes, u2/ω2 Ad ≥ 1, flow separation will occur. Flow separation is induced
by viscosity. If δ2

v � Ad then the exact value of the viscosity is not important to predict flow
separation. We have reached a high Reynolds number limit.

With mean flow (u0 �= 0), we have the same answer as for large amplitudes.

o) Flow separation always occurs when the particle displacement is of the order of the diameter
of the orifice: u′d ∼ ωd . In the pipe we have: u′D = u′d (d/D)2. The critical level is given by

p′ ∼ ρ0c0ωd(d/D)2.
At 10 Hz this corresponds to SPL = 110 dB.
At 100 Hz this corresponds to SPL = 130 dB.
At 1000 Hz this corresponds to SPL = 150 dB.
Within a hearing-aid device, sound is transferred from the amplifier (at the back of the ear) to
the ear-drum by means of a pipe of D = 1 mm. An orifice of d = 0.1 mm placed in this pipe,
will protect the ear by limiting sound level around 1 kHz to SPL = 130 dB. Such devices are
indeed in everyday use.

p) In a stationary subsonic free jet induced by a mean flow we expect a uniform pressure. The
first intuitive guess for a quasi-stationary theory is to assume that the inertial effects upstream
of the orifice remain unchanged, while the inertial effects in the jet are negligible. This leads
to the common assumption that the end correction of a thin orifice with a mean flow is at low
frequencies half of the end correction in the absence of mean flow. Experiments by Ajello [2]
indicate a much stronger reduction of the end-correction. In some circumstances negative end
corrections are found ( Ajello [2], Peters [156]). Indeed the theory for open pipe termination of
Rienstra [171] indicates that we cannot predict end corrections intuitively.

q) R = p−1 /p+1 = [A1 − (A2 + A3)]/[A1 + (A2 + A3)].
r) R = p−1 /p+1 =[(A1 − A3) cos(kL)− i A2 sin(kL)]/[(A1 − A3) cos(kL)+ i A2 sin(kL)].

R = −1 for kL = π(n + 0.5), R = 0 for A2 = 0 when A1 = A3 and R = 1 for A3 = 0 when
kL = nπ (n = 0, 1, 2, 3, . . . ).

s) p̂+1 + p̂−1 = p̂b + ρwω2a0â. p̂b/p0 = −3γ â/a0.

A( p̂+1 − p̂−1 ) = A p̂+2 − (ρwcw)iω4πa2
0 â. p̂+1 + p̂−1 = p̂+2 .

t) p̂b/ p̂in = [1+ ( ωω0
)2( 2π ia0

Ak − 1)]−1.

u) ω2
0a2

0/c
2
l = 3ρl/ρw � 1. At p0 = 1 bar, ρl/ρw = O(10−3).

v) 3γl p0/ρwc2
w = O(10−4) hence a0ω/cw < 10−2.

w) ω2
0 � 3γl p0/2ρwa2

0 . R = −[1+ A(ω2 − ω2
0)/2π iωa0]−1.

x) When a0 = O(D) we do not have a radial flow around the bubble. The approximation used for
small bubbles fails.
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y) [g] = s/m.

z) ω2 ĝ − c2
0

d2

dx2 ĝ = e−iωτ δ(x − y)/2π .

Integration around x = y yields: −[ d
dx ĝ]y+y− = e−iωτ /2πc2

0.

[ d
dx ĝ]± = ∓ikĝ±. At x = y we have ĝ± = e−iωτ /4π iωc0.

Hence ĝ± = ĝ±x=y e∓ik(x−y) with “+” for x > y and “-” for x < y.

Therefore: ĝ = e−iωτ e−ik|x−y| /4π iωc0.

A) Using the result of exercise z) we find:

ĝ+(L |y) = ĝ0(L |y) with ĝ0(x|y) = e−iωτ e−ik|x−y| /4π iωc0.

Furthermore:
ZL

ρ0c0
= ĝ+(L)+ ĝ−(L)

ĝ+(L)− ĝ−(L) , R = ZL − ρ0c0

ZL + ρ0c0
= ĝ−(L)

ĝ+(L) .

Hence: ĝ(x|y) = ĝ+ + ĝ− = ĝ0(x|y)+ R ĝ0(x|2L − y).

This corresponds to the waves generated by the original source at y and an image source at
2L − y.

B) The same answer as the previous exercise with (section 4.4.5):
R = −1/[1+ A(ω2−ω2

0)/(2π iωcwa0)]where A is the pipe cross-sectional area, a0 the bubble
radius and ω0 the Minnaert frequency of the bubble.

C) For |x1 − y1| 

√

S| and k2
0 S � 1 the Green’s function is independent of the position

(y2, y3) of the source in the cross section of the pipe. Hence we have: g(x1, t |y1, τ ) =∫∞
−∞

∫∞
−∞ G(x, t |y, τ ) dy2dy3 = SG(x, t |y, τ ).

D) Moving the source towards the observer by a distance �y should induce the same change �g
in g(x, t |y, τ ) as a displacement �x = −�y of the observer in the direction of the source. The
distance |x − y| is in both cases reduced by the same amount.
This implies that: �g = ∂g

∂y�y = − ∂g
∂x�x .

E) p′ � ρ′c2
0 ∼ M0

1
2ρ0U2

0 (d
2/S) = 2× 10−2 Pa. SPL = 60 dB.

F) SPL = 63 dB.

G) (S/a2
0)(ρwc2

w/3γ p0)
1
2 = 2.3× 104 or 87 dB. ρwc2

w/3γ p0 = 5.4× 103 or 75 dB.

H) f ∼ U0/D = 0.1 kHz, ω0/2π = 6.5 kHz.

Chapter 5

a) Z(0) = ρ0c0
(ZL + ρ0c0)+ (ZL − ρ0c0) e−2ik0 L

(ZL + ρ0c0)− (ZL − ρ0c0) e−2ik0 L

For ZL = ∞ we have Z(0) = iρ0c0 cotg(k0L). As Re Z(0) = 0 for ZL = ∞ the piston does
in general not generate any acoustical power unless there is resonance, i.e. k0L = (n + 1

2 )π .

The acoustical field in the pipe is given by: p̂ = p̂+ e−ik0 x + p̂− eik0 x .
The amplitudes p̂+ and p̂− are calculated from the piston velocity û p by using: ρ0c0û p =
p̂+ − p̂−, Z(0)û p = p̂+ + p̂−.

Hence: p̂+ = 1
2 (Z(0)+ ρ0c0)û p , p̂− = 1

2 (Z(0)− ρ0c0)û p .

b) ZL � Z ′L + iρ0ωδ.

c) For x < 0 we have p̂+ = 0 while: p̂− = 1
2ρ0c0(Sp/S)û p(1+ e−ik0 L).
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The condition that there is no radiation, p̂− = 0, is obtained for: k0L = (2n + 1)π , where
n = 0, 1, 2, . . . .

d) p̂ = p̂+ eik0 L + p̂− e−ik0 L ,

with: p̂+ = ρ0c0û p(S + 2Sp)

(S + 2Sp)− (S − 2Sp) e−2ik0 L
, and p̂− = S − 2Sp

S + 2Sp
p̂+.

Flow separation becomes dominant at the junction when:
( p̂+ − p̂−)/ρc2

0 = O(k0
√

S1). The amplitude of the second harmonic p̂1, generated by non-
linearities, can be estimated from:
( p̂1/ p̂+) ∼ k0L( p̂+/ρ0c2

0).

e) Configuration a): Z p = ρ0c0
(Z1 + ρ0c0)+ (Z1 − ρ0c0) e−2ik0 L

(Z1 + ρ0c0)− (Z1 − ρ0c0) e−2ik0 L
,

where: Z1 = S1Z2 Z3/(S2Z3 + S3 Z2), Z2 = ρ0c0, Z3 = iρ0c0 tan(k0L).
The system is not a closed resonator because the condition of zero pressure at the junction is
never satisfied.

Configuration b): Z p = ρ0c0
(Z1 + ρ0c0)+ (Z1 − ρ0c0) e−2ik0 L

(Z1 + ρ0c0)− (Z1 − ρ0c0) e−2ik0 L
,

where: Z1 = S1Z2 Z3(0)/(S2Z3(0)+ S3Z2), Z2 = ρ0c0,

Z3(0) = ρ0c0
(Z3(2L)+ ρ0c0)+ (Z3(2L)− ρ0c0) e−2ik0 L

(Z3(2L)+ ρ0c0)− (Z3(2L)− ρ0c0) e−2ik0 L
,

Z3(2L) = S3 Z4 Z5/(S4 Z5 + S5Z4), Z4 = iρ0c0 cotg(k0L), Z5 = ρ0c0.
The system is in resonance for k0L = (n + 1

2 )π .

Configuration c): Z p = 1
2ρ0c0i tan(k0L).

The system is resonant for k0L = (n + 1
2 )π .

f) At the mouthpiece we have: ρ0c0û p = p̂+ − p̂−.
If we assume friction losses to be dominant we have: p̂− = p̂+ e−2αL

where: α = 1

D

√
πν

c0L

(
1+ γ − 1√

ν/a

)
� 0.027 m−1.

Hence we find: p̂+ � 7.6× 103 Pa, and p̂ = p̂+ + p̂− � 2 p̂+.
The corresponding fluid particle oscillation amplitude � at the open pipe termination is: � �
p̂/(ρ0c0ω) � 7× 10−2 m.
If we assume non-linear losses at the open pipe termination to be dominant we have (equation
5.24) û = √( 3

2π û pc0) and p̂ � ρ0c0û � 1.6 × 104 Pa. Friction losses and flow separation
losses are comparable and the acoustical fluid particle displacement is of the order of the pipe
diameter.

g) p̂+1 − p̂−1 = ρ0c0û p , p̂+1 e−ik0 L1 + p̂−1 eik0 L1 = p̂+2 + p̂−2 ,

( p̂+1 e−ik0 L1 − p̂−1 eik0 L1)S1 = ( p̂+2 − p̂−2 )S2,

p̂+2 e−ik0 L2 + p̂−2 eik0 L2 = p̂+3 + p̂−3 ,

( p̂+2 e−ik0 L2 − p̂−2 eik0 L2)S2 = ( p̂+3 − p̂−3 )S3,

p̂+3 e−ik0 L3 + p̂−3 eik0 L3 = 0, ρ0c0ûex = p̂+3 e−ik0 L3 − p̂−3 eik0 L3 .

h) p̂ = A cos(kx) for x < L , while p̂ = B e−ikx for x > L . Suitable dimensionless groups are
z = kL , α = cM L/c0a, λ = ρ0L/σ , where the propagation speed of transversal waves in the
membrane cM =

√
T/σ is introduced. The resonance equation is then

(z − 8α2z−1) sin z = λ eiz .
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λ → 0 when the air density becomes negligible or when the membrane becomes very heavy.
In that case we have the membrane-in-vacuum vibration z � α√8 + . . . and the closed pipe
modes z � nπ + λ

nπ−8α2/nπ
+ . . . (n = 1, 2, 3, ..).

So when λ = 0 (no energy is radiated) there are indeed undamped solutions with Im(z) =
Im(ω) = 0.

i) m = ρ0Sn(
+ 2δ), K = ρ0c2
0 S2

n/V .

j) p̂in = i ωρ0(
+ 2δ)Q̂

Sn

(
1− ω2

ω2
0

) .

k)
p̂transmitted

ρ0c0û p
= 2(1− ω2/ω2

0)− (iωV/c0 S)

[2(1− ω2/ω2
0)− (iωV/c0S)] eik0 L −(iωV/c0 S) e−ik0 L

.

There is no transmission when both ω = ω0 and k0L = (n + 1
2 )π .

l) Transmission and reflection coefficient:

T = p̂+2
p̂+1
= 1

(1+ ik0
Sp/Sd)[1− (ω2/ω2
0)+ (ik0V/2Sp)]

,

R = p̂−1
p̂+1
= T + (ik0
Sp/Sn)− 1

(ik0
Sp/Sn)+ 1
,

where: ω2
0 = c2

02Sd/(
V ), and: 
 � 1.6
√

Sd/π �
√

Sd .

m) T = 2
(

2− iωρwcw

Sp(γ p0/V )(1− ω2/ω2
0)

)−1
, R = T − 1, ω2

0 =
(γ p0

V

)( S

ρw


)
.

n) An energy balance yields: 1
2 p̂in Q̂ = 2

3π ρ0û3Sn , where we assumed that p̂in and Q̂ are in
phase and that vortex shedding at the neck can be described by means of a quasi-stationary
model. The internal pressure p̂in is related to the acoustical velocity û through the neck by the
momentum conservation law: p̂in = ρ0iω
û.
This yields: û = √(3πω
Q̂/4Sn) which is a factor

√
(2Snk0
/Sp) smaller than for a 1

4λ open
pipe resonator.

o)
p̂in

p̂ex
= 1+ ω0

ω1

u0 − c0

u0
+ i

(
1+ ω

2
0

ω2
1

)
, with ω2

0 = c2
0 Sn/(
V ) and ω1 = c0/
.

p) As there are no sources q = 0, we have:

ρ′(x, t) = −c2
0

t∫
−∞

[
ρ′(y, τ ) ∂ga

∂yi
− ga(x, t |y, τ )ρ

′(y, τ )
∂yi

]
y=0

ni dτ ,

where ga(x, t |y, τ ) =
∫∫
S

G(x, t |y, τ ) dS( y).

Other contributions from the surface integral vanish if we assume that G has the same boundary
conditions as the acoustic field on these surfaces. At y = 0 we have (∂ga/∂yi )ni = 0. Fur-
thermore we have: ρ0

∂
∂τ

u′ = −c2
0
∂
∂y ρ
′, and n1 = −1 at y = 0, which yields: p′ = c2

0ρ
′ =

ρ0c2
0

∫ t
−∞ ga(x, t |y, τ ) ∂∂τ u′ dτ . The final result is obtained by partial integration.

q) f � c0/(2L), û/(ωw) � 1 m/s. p̂ � ρ0c0û � 4× 102 Pa.
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The ratio of acoustical particle displacement to pipe diameter is w/D = 2 × 10−2. We expect
vortex shedding at the pipe ends to be a minor effect in a Rijke tube.

r) Using an energy balance between sound production and dissipation by vortex shedding we have:
0.05 1

2ρ0u2
0û B×w � ρ0û3 B×w, or:

|û| � 0.22u0.
The hydrodynamic resonance condition fw/u0 � 0.4 combined with the acoustic resonance
condition 2π f = c0

√
(wB/
V ) and the order of magnitude estimate 
 ∼ 2

√
(Bw/π) = 0.44m

yields: f � 18.5 Hz and u0 � 14 m/s = 50 km/h, | p̂| = ρω
|û| � 43 Pa.
For a slit-like orifice we have 
 ∼ w.

s) The blowing pressure p0 is a fair estimate. When p̂ reaches p0 the flow velocity through the
reed vanishes at high pressures, which provides a non-linear amplitude saturation mechanism.

Chapter 6
a) The fluid pushed ahead of the sphere in the direction of the translation can be considered as

generated by a source. The fluid sucked by the rear of the sphere corresponds to the sink.

b) Qualitatively we find that the streamlines as observed in the reference frame moving with the
vortex ring are very similar to those generated by a dipole or a translating sphere.
Quantitatively the circulation � = ∮

v · d
 of the vortex corresponds to a discontinuity �φ
of the flow potential across a surface sustained by the vortex ring. Such a discontinuity can be
generated by a dipole layer on this surface which replaces the vortex ring [reference Prandtl].
Assuming the dipole layer to consist out of a layer of sources at the front separated by a distance
δ from a layer of sources at the rear, the potential difference is given by �φ = uδ. The velocity
u is the flow velocity between the two surfaces forming the dipole layer. Taking the projection
S of the surface on a plane normal to the direction of propagation of the vortex ring, we can
represent in first approximation the dipole layer by a single dipole of strength uSδ placed at the
center of the ring and directed in the direction of propagation of the vortex ring.

c) Electromagnetic waves are transversal to the direction of propagation like shear-waves. Acousti-
cal waves are compression waves and hence longitudinal.

d) R = (ρaircair − ρwatercwater)/(ρaircair + ρwatercwater), ρaircair = 4× 102 kg/m2 s,
ρwatercwater = 1.5× 106 kg/m2 s, 1+ R = 10−4.

e) A dipole placed normal to a hard wall will radiate as a quadrupole because the image dipole is
opposite to the original dipole. A dipole placed parallel to a hard wall will radiate as a dipole of
double strength because the image has the same sign as the original.

f) The radiated power increases by a factor two because the intensity is four times the original
intensity but the radiation is limited to a half space.

g) The first transverse mode of the duct has a pressure node in the middle of the duct. Hence a
volume source placed on the axis of the duct experiences a zero impedance for this first mode.
It cannot transfer energy to this mode.

h) The vanishing acoustic pressure at the water surface p′ = 0 precludes any plane wave propaga-
tion. The first propagating mode has a cut-on frequency fc = 1

4 c0/h corresponding to a quarter
wave length resonance.

i) A dipole placed normal to the duct axis will not radiate at frequencies below the cut-off fre-
quency of the first transverse mode in a duct with hard walls. This is explained by the destruc-
tive interference of the images of the dipole in the direction of the axis. On the other hand,
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however, when placed along the axis the dipole will very efficiently radiate plane waves at low
frequencies. The amplitude of these waves are: | p̂| = ωρ0 Q̂δ/S.

j) Assume that the quadrupole is approximated by two dipoles (1 and 2), one very close to the
surface of the cylinder (r1 � R) and one far away (r2 
 R). If the dipoles are directed radially,
the dipole at the surface forms a quadrupole with its image (r ′1 = R2/r1 � R), while the image

of the other dipole is very close (r ′2 = R2/r2 � R) to the axis of the cylinder and very weak.
The distance between the source and sink forming the second dipole is reduced by a factor
(R2/r2

2 ) while the strength of each image is equal to that of the original source. As a result the
dipole far away from the cylinder radiates independently of the dipole close to the cylinder.
A very similar behaviour is found when the dipoles forming the quadrupole are normal to the
radius of the cylinder (in tangential direction). Then the radiation of the dipole close to the
surface is enhanced by a factor two, while that of the other dipole is not affected.

k) Equal thrust implies: ρ1u2
1 D2

1 = ρ2u2
2 D2

2. If ρ1 = ρ2 we have u1 D1 = u2 D2. Assuming

subsonic free cold jets we have: I ∼ u8 D2 = (u D)8/D6. Hence: I1/I2 = D6
2/D6

1 = 26 or a
difference of 36 dB.
In practice a low sound production does also correspond to a lower power 1

2ρu3 D2 ∼
(u D)3/D. The introduction of high bypass jet engines was aimed to reduce the propulsion
costs, but it appeared to be also a very efficient noise reduction method.

l) As the compressibility of an ideal gas is determined by the mean pressure there appears to
be no monopole sound production upon mixing of a hot jet with a cold gas environment with
equal specific-heat ratio γ . The sound is produced [127, 146] by the difference in acceleration
between neighbouring particles experiencing the same pressure gradient but having different
densities. This corresponds to a force in terms of the analogy of Lighthill and a dipole source of
sound. Therefore the radiation scales in a subsonic case at I ∼ M6.

m) The large contrast in compressibility K between the bubbly liquid and the surrounding water
results into a monopole type source (fluctuating volume). This corresponds to a scaling rule
I ∼ M4.

n) This effect is not significant in subsonic free jets.

o) The characteristic frequency for turbulence in a free jet with circular cross section is u0/D
which implies that: D/λ = D f/c ∼ u0/c0. Hence a subsonic free jet is a compact flow region
with respect to sound production by turbulence.
Note: for a free jet with a rectangular cross sectionw×h andw 
 h the characteristic frequency
of the turbulence is 0.03u0/h.

p) Using Curle’s formula:

ρ′ = xi x j

4π |x|3c4
0

∂2

∂t2

∫∫∫
V

Ti j

(
y, t − |x|

c0

)
d y + x j

4π |x|2c3
0

∂

∂t
Fj

(
t − |x|

c0

)
and ∂

∂t ∼ u0/D, Ti j ∼ ρ0u2
0, Fj ∼ ρ0u2

0d D, and V ∼ D3, we obtain:

ρ′ ∼ ρ0u3
0 D

4π |x|c3
0

(u0

c0
+ d

D

)
.

The cylinder induces an enhancement of turbulence sound production by a factor (1+dc0/Du0).
Blowing on a finger we indeed observe a significantly larger sound production than blowing
without finger.

q) Sound production due to volume fluctuations V ′ of the bubble is given by:
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ρ′ = (4π |x|c2
water)

−1(∂2/t2)V ′, where, assuming isentropic oscillations of the bubble of initial
volume V0 = 4πa3

0/3 at p0, we have: V ′/V0 = −p′/γair p0. The typical pressure fluctuations

in a free jet are of the order p′ ∼ ρwu2
0. Assuming ∂/∂t ∼ u0/D we find

ρ′
ρwater

∼ D

4π |x|
u4

0

c4
water

a3
0

D3

ρwaterc2
water

p0
.

The enhancement in sound production, when compared to no bubbles, is by a factor (1 +
(a0/D)3(ρwaterc2

water/p0)).
Since ρwaterc2

water/p0 = O(104), even a small bubble will already enhance the sound produc-
tion considerably.

r) With a single blade the sound production as a result of the tangential component of the lift force
(in the plane of the rotor) scales as: ρ′/ρ0 ∼ CL D(k0 R)3/8π |x|. The sound produced by the
axial component is a factor u0/c0 weaker.
With two opposite blades, the lift forces in tangential direction form a quadrupole which result
into a factor k0 R weaker sound radiation than in the case of the single blade. The sound pro-
duction in a ventilator is actually dominated by non-ideal behaviour such as the non-uniformity
of the incoming flow.

s) In a hard walled duct an ideal low speed axial ventilator will not produce any sound. The effect
of the tangential forces is compensated by images in the walls while the pressure difference
�p induced by the axial force is constant. Non-uniformity of the incoming flow will induce
fluctuations in the pressure difference �p which are very efficiently radiated away. Especially
the supports of the ventilators are to be placed downstream of the fan. Further sources of flow
non-uniformity are the air intake or bends.

t) The sound production will be dominated by the interaction of the rotor blades with the thin wake
of the wing. The resulting abrupt changes in lift force on the blades of the rotor induce both
radial and axial sound radiation. The thinner the waker the higher the generated frequencies.
As the ear is quite sensitive to relatively high frequencies an increase of the wake thickness can
result into a significant reduction of noise (dBA).

u) The tip Mach number ωR/c0 = k0 R is of order unity. The rotor is therefore not compact at the
rotation frequency, and certainly not at the higher harmonics.

v) The dominant contribution is from the unsteady force, given by CD
1
2ρ0u2

0, on the body. This

results into a sound production scaling as (u0/c0)
3 (see Curle’s formula).

w) ZL = ρ0c0
1
4 (k0a)2, Z p = ρ0c0

(ZL + ρ0c0)+ (ZL − ρ0c0) e−2ik0 L

(ZL + ρ0c0)− (ZL − ρ0c0) e−2ik0 L
.

x) 〈I 〉 = 1
4 [ p̂∗û + p̂û∗] = 1

2 Re(Z p)|û|2, and 〈W 〉 = πa2〈I 〉.
At resonance k0L = (n + 1

2 )π we find: Z p = ρ0c0(ρ0c0/ZL)

(see previous exercise). This corresponds to an enhancement
Z p/ZL = [4/(k0a)2]2 of the radiated power.

y) p̂r = A+ e−ik0r +A− eik0 L , iωρ0ûr = p̂ + ik0[A+ e−ik0r −A− eik0 L ].
(r1/r2)

2 = S1/S2 and r1 = r2 − L , so r2 = L/(1−√S1/S2).

A+ = ρ0c0û pr1/
{
[1− i/(k0r1)] e−ik0r1 −R[1+ i/(k0r1)] eik0r1

}
R = A−

A+ = −
1− 1

4 (k0a2)
2[1− i/(k0r2)]

1− 1
4 (k0a2)

2[1+ i/(k0r2)]
e−2ik0r2
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z) Except for the highest frequencies, there is no radiation into free-space. Hence the size of the
loudspeaker compared to the acoustical wave-length is not relevant for the sound transfer from
loudspeaker to eardrum. The Walkman loudspeaker acts almost directly onto the eardrum.

A) Friction losses are given by: (1− | p̂−/ p̂+|) f = 1− e−2αL � 2αL , where α can be calculated
by using the formula of Kirchhoff. The friction is proportional to

√
ω.

Radiation losses are given by: (1 − | p̂−/ p̂+|)r = 1
2 (k0a)2, and are proportional to ω2. Using

the results of exercise (5.f) we find
for f0 : (1− | p̂−/ p̂+|) f = 5 · 10−2, (1− | p̂−/ p̂+|)r = 1.2 · 10−4;
for f1 = 3 f0 : (1− | p̂−/ p̂+|) f = 9 · 10−2, (1− | p̂−/ p̂+|)r = 1 · 10−3;
for f2 = 5 f0 : (1− | p̂−/ p̂+|) f = 1.2 · 10−1, (1− | p̂−/ p̂+|)r = 3 · 10−3.
In a flute of the same size as a clarinet the radiation losses are increased by a factor eight (two
radiation holes and twice the fundamental frequency). The friction losses increase by a factor√

2 due to the higher frequency.

B) Assuming a perfectly reflecting ground surface, the energy is distributed over a semi-sphere:
I = Wr/(2πr2). As Imin = 10−12 W/m2, we find for Wr = 5× 10−5 W that r � 4 km.

C) In free space the bubble experiences the impedance of a compact sphere:
Re(Z) = ρwatercwater(k0a0)

2. In a pipe we have: Re(Z) = ρwatercwater 8πa2
0/S.

D) As the twin pipes oscillate in opposite phase the radiation has a dipole character and is a factor
(k02a)2 weaker than for an individual pipe. Such systems are therefore acoustically almost
closed. In a duct a wall placed along the duct axis can form such a system of twin pipes if it is
longer than the duct width. In such a case the oscillation of the system is called a Parker mode
and does not radiate because the oscillation frequency is below the cut-off frequency for the
first transverse mode. In fact the twin pipes forms with its images an infinite row of pipes. In a
similar way such modes can occur in rotors or stators of turbines. This kind of oscillations have
been reported by Spruyt [200] for grids placed in front of ventilators.

Chapter 7
a) (i) kca = 2π fca/c0 = j ′11 = 1.84118, so fc = 996.3 Hz.

(ii) k11 = −15.93 i, so 20 log10 | e−ik11 D | = −20|k11|D log10 e =
−138.3D = −20, and D = 14.5 cm.

(iii) k11 = −18.4 i, so D = 12.5 cm.

b) Since σmµa→∞, Im/I ′m → 1 and αmµ = iσmµ � −ikρ0c0/X .
For r � a

Jm(αmµr)

Jm(αmµa)
e−ikmµx �

(a

r

)1/2
e−σmµ(a−r) e

−i
√

k2+σ 2
mµx

.

c) A simple point mass source Qδ(x − x0) eiωt , where we take x0 = 0, ϑ0 = 0, gives rise to the
equation

∇2 p + k2 p = −iωQδ(x)
1

r0
δ(r − r0)

∞∑
m=−∞

δ(ϑ − 2πm)

with solution

p(x, t, ϑ) = ωQ

4π

∞∑
m=−∞

∞∑
µ=1

Jm(αmµr0)Jm(αmµr) e−ikmµ|x |−imϑ

1
2 (a

2 −m2/α2
mµ)Jm(αmµa)2kmµ

.
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348 G Answers to exercises.

Chapter 8

a) Since A(x) = πa2 e2mx , we have p(x) = p̂0 e−i
√

k2−m2 x−mx .

b) Use the relation (8.64)

c2
0(1− εy)2 + c2

0(εx − εx0)
2 = constant

with y = h at x = 0 and L , such that x0 = 1
2 L , and y = 0 at x = 1

2 L , to obtain

L =
√

8hε−1(1− 1
2εh) = 54.7 m.

Chapter 9
a) With the propeller in vane position (no angle of attack) the lift force as defined in (9.26) is

directed in z-direction only, and Me = MR . Using the results of section 9.3 we find

p(x, t) � − f0 M2
R sin θ cos θ cos(φ − ωt + kr)

4πar(1 − MR sin θ cos(φ − ωt + kr))3
.

The radiation pattern has zeros in the directions θ = 0◦, 90◦, and 180◦, while it has its main
directions of radiation in (near) the conical surfaces θ = 45◦ and 135◦.

b) R = a, R = a, so te = t − a/c0, and R·M = Ma cos α, and

4πp(x, t) = ρ0 Q′e
a(1 − M cos α)2

+ ρ0QeV
cos α − M

a2(1− M cos α)3
.

4πp(x, t) = 1

a2(1− M cos α2)

( a·F′e
c0
− M ·Fe

)
+ (1− M2)(a·Fe)

a3(1− M cos α)3
.
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