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The 336-year-old synchronization observations of Christiaan Huygens are re-exam- 
ined in modern experiments. A simple model of synchronization is proposed. 
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1. Introduction 

Shortly after The Royal Society's founding in 1660, Christiaan Huygens, in partner- 
ship with the Society, set out to solve the outstanding technological challenge of the 
day: the longitude problem, i.e. finding a robust, accurate method of determining lon- 
gitude for maritime navigation (Yoder 1990). Huygens had invented the pendulum 
clock in 1657 (Burke 1978) and, subsequently, had demonstrated mathematically 
that a pendulum would follow an isochronous path, independent of amplitude, if 
cycloidal-shaped plates were used to confine the pendulum suspension (Yoder 1990). 
Huygens believed that cycloidal pendulum clocks, suitably modified to withstand 
the rigours of sea travel, could provide timing of sufficient accuracy to determine 
longitude reliably. Maritime pendulum clocks were constructed by Huygens in col- 
laboration with one of the original fellows of The Royal Society, Alexander Bruce, 
2nd Earl of Kincardine. Over the course of three years (1662-1665) Bruce and the 
Society supervised sea trials of the clocks. Meanwhile, Huygens, remaining in The 
Hague, continually corresponded with the Society through Sir Robert Moray, both 
to inquire about the outcome of the sea trials and to describe the ongoing efforts 
Huygens was making to perfect the design of maritime clocks. On 1 March 1665, 
Moray read to the Society a letter from Huygens, dated 27 February 1665, reporting 
of (Birch 1756) 

an odd kind of sympathy perceived by him in these watches [two maritime 
clocks] suspended by the side of each other. 

Huygens's study of two clocks operating simultaneously arose from the practical 
requirement of redundancy for maritime clocks: if one clock stopped (or had to be 
cleaned), then the other could be used to provide timekeeping (Huygens 1669). In 
a contemporaneous letter to his father, Huygens further described his observations, 
made while confined to his rooms by a brief illness. Huygens found that the pendulum 
clocks swung in exactly the same frequency and 180? out of phase (Huygens 1950a, b). 
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When he disturbed one pendulum, the anti-phase state was restored within half an 
hour and remained indefinitely. 

Motivated by the belief that synchronization could be used to keep sea clocks in 
precise agreement (Yoder 1990), Huygens carried out a series of experiments in an 
effort to understand the phenomenon. He found that synchronization did not occur 
when the clocks were removed at a distance or oscillated in mutually perpendicular 
planes. Huygens deduced that the crucial interaction came from very small move- 
ments of the common frame supporting the two clocks. He also provided a physical 
explanation for how the frame motion set up the anti-phase motion, but though his 
prowess was great his tools were limited: his discovery of synchronization occurred 
in the same year when young Isaac Newton removed to his country home to escape 
the Black Plague, and begin the work that eventually led to his Principia, published 
some 20 years later. 

The Royal Society viewed Huygens's explanation of synchronization as a setback 
for using pendulum clocks to determine longitude at sea (Birch 1756). 

Occasion was taken here by some of the members to doubt the exactness 
of the motion of these watches at sea, since so slight and almost insensible 
motion was able to cause an alteration in their going. 

Ultimately, the innovation of the pendulum clock did not solve the longitude prob- 
lem (Britten 1973). However, Huygens's synchronization observations have served 
to inspire study of sympathetic rhythms of interacting nonlinear oscillators in many 
areas of science. The onset of synchronization and the selection of particular phase 
relations is a fundamental problem of nonlinear dynamics and one which has been 
avidly pursued in recent years in problems ranging from neurobiology and brain func- 
tion (Rodriguez et al. 1999) to animal locomotion (Strogatz & Stewart 1993; Gol- 
ubitsky et al. 1999), superconducting electronics, laser physics, and smart antenna 
arrays (Liao & York 1993). 

In this paper we reconsider Huygens's observations. To our knowledge, previous 
attempts to understand Huygens's observations are few and ultimately unsatisfac- 
tory. We have built an updated version of the two-clock system, with pendulums 
attached to a common frame free to move in one dimension. In our experiments, we 
vary the coupling strength by changing the ratio of pendulum mass to system mass ,I, 

and, thereby, explore in greater depth the situation facing Huygens. At small A, (weak 
coupling) corresponding to Huygens's situation, we find that whenever the pendu- 
lums frequency lock, they fall into anti-phase oscillations. However, as the coupling is 
increased by increasing /, we observe another state in which one or both clocks cease 
to run: a state we call 'beating death'. This behaviour is increasingly dominant as p 
becomes large. Thus, our results suggest Huygens's observations depended somewhat 
serendipitously on the extra heavy weighting of his clocks intended to make them 
more stable at sea. 

We study the problem theoretically by deriving a Poincare map for the nonlinear 
dynamics. Our map is in agreement with the experimental observations; moreover, in 
one useful limit, the map reduces to a single degree of freedom, and captures many 
essential results of our experiments. We are also able to explain the behaviour in 
very direct physical terms based on a normal mode description, a picture originally 
put forward by Korteweg (1906). 
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2. Background 

(a) Details of Huygens's clock experiments 

The operation of a pendulum clock is described in great detail by Huygens (Huygens 
1986). In brief, the pendulum is attached to an escapement, which alternately blocks 
and releases a scape wheel as the pendulum oscillates. This action provides the timing 
that is transmitted from the scape wheel to the clocks' hands via a gearing system 
(the motion work). The scape wheel is also connected through a separate gearing 
system (the going train) to an energy source, typically a wound spring or elevated 
weights. The unwinding spring or falling weights drive the motion of the scape wheel, 
which, in turn, provides small 'kicks' to the pendulum via the escapement. This 
transmission of energy to the pendulum compensates for losses due to friction; thus, 
the pendulum continues to oscillate indefinitely as long as the spring is periodically 
rewound or the fallen weights are periodically raised back up. 

Many experimental details of Huygens's observations are recorded in his writings 
(Huygens 1950a, b; Huygens 1986). The pendulum in each clock measured ca. 9 int in 
length, corresponding to an oscillation period of ca. 1 s. Each pendulum weighed lbt 
and regulated the clock through a verge escapement, which required each pendulum 
to execute large angular displacement amplitudes of ca. 20? or more from vertical 
for the clock to function (see Rawlings (1944) and also Landes (1983, appendix A) 
for a detailed description of the verge escapement). The amplitude dependence of 
the period in these clocks was typically corrected by use of cycloidal-shaped bound- 
aries to confine the suspension (Huygens 1986). Each pendulum clock was enclosed 
in a 4 ft? long case; a weight of ca. 100 lb was placed at the bottom of each case 
(to keep the clock oriented aboard a ship.) From this information, we estimate that 
the important experimental parameter /, the ratio of the single pendulum mass to 
the total system mass, is ca. 0.005. Though the two clocks differed in certain phys- 
ical aspects, (for example, Huygens notes that the size of the clocks was somewhat 
different (Huygens 1950a, b)) the clocks were closely matched in those characteris- 
tics we expect are essential for the dynamics. In particular, well-adjusted pendulum 
clocks of the 1660s would typically run at rates which differed by only 15 s per day 
(so their natural frequencies differed by approximately two parts in 10 000) (Landes 
1983). Pendulum clocks represented a tremendous advance in horology, the science of 
timekeeping. Before Huygens's invention of the pendulum clock, typical clocks (e.g. 
verge escapement with balance wheel regulator) varied by ca. 15 min (1%) per day 
(Landes 1983). 

Huygens's laboratory notebook contains a detailed description of tests and observa- 
tions on synchronization (Huygens 1950a, b). In some experiments, Huygens studied 
two clocks that were suspended side by side, each hanging from a hook embedded 
in the same wooden beam. In other experiments, Huygens studied a configuration 
with each clock hanging from its own wooden beam and the two beams lying on 
top of back to back chairs. At first, Huygens suspected the 'sympathy' was due 
to induced air currents, but eventually concluded the cause was the 'imperceptible 
movements' of the common supporting structure. The associated coupling was weak: 
when Huygens disturbed the pendulums, he found the clocks required ca. 30 min 

t 1 in equals 2.54 cm. 
t 1 lb equals 0.4536 kg. 
[ 1 ft equals 12 in equals 30.5 cm. 
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(1) (2) 

(a) 

(b) 

Figure 1. Multiple-exposure images illustrate the anti-phase attractor of a large mass ratio 
(,u = 0.0063) system of two pendulums mounted on a common translating beam. (a) The system 
is started with equal amplitude, in-phase oscillation of the left (1) and the right (2) pendulums. 
In the presence of weak coupling through lateral motion of the mounting cart, the in-phase state 
is unstable and, after a sufficient time, the system oscillates stably in anti-phase final state (b). 

before synchronization was restored. At one second per cycle, a transient time of 
30 min amounts to 1800 cycles. (Interestingly, Huygens considers this restoration 
time as fast, perhaps a reflection of the pace of life then and now.) The dissipation 
was also weak, as can be seen from the following estimate: the total energy avail- 
able to run each clock is ca. 100 J, obtained from weights of ca. 10 kg mass falling 
a distance of 1 m. Assuming this energy is sufficient to keep a clock running for 
ca. 250 000 oscillations (ca. 3 days), the energy input per oscillation is ca. 4 x 10-4 J. 
The total energy in a 9 in long, ? lb pendulum swinging through a semiarc of 25? 
is ca. 0.05 J. Thus, energy loss per oscillation relative to the pendulum energy is 
ca. 0.8%. 

(b) Recapping Korteweg and Blekhman studies 

We know of two studies which were directly motivated by Huygens's observations. 
The first was Korteweg's (1906) paper in which he analysed a three-degree-of-freedom 
model consisting of two plane pendulums connected to a rigid frame free to oscillate 
in one dimension. (Korteweg was also strongly motivated by the 18th century obser- 
vations of Ellicott regarding the slow beating between weakly coupled pendulums.) 
Korteweg made a linear normal mode analysis for small oscillations in the absence 
of damping and driving effects. To explain why only certain of these modes might be 

observed, and others not, Korteweg introduced the idea that friction is responsible 
for certain motions being unsustainable. If a mode involved large-amplitude motion 
of the supporting frame, he argued, the internal clock mechanisms would be unable 
to provide enough energy to sustain this motion. Conversely, for a mode in which 
the frame moved only a little, the energy input could overcome the effects of friction. 
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Figure 2. (a), (b) Time-series from pendulum experiments and (c), (d) simulations illustrating 
the evolution from unstable in-phase to stable anti-phase oscillations. Damped beating is found 
in both the pendulums' (a), (c) phase difference a and (b), (d) amplitudes A1, A2 . Time is 
scaled by the pendulum period and amplitudes are scaled by the initial amplitude at t = 0. The 
experimental conditions correspond to those listed in figure 1. 

Though these aspects of energy damping and energy input were not included in his 
quantitative analysis, Korteweg concluded that Huygens's observations were entirely 
captured by the three-degree-of-freedom model, and that the anti-phase mode, if not 
the only sustainable motion, enjoyed a distinct advantage over in-phase motion. This 
advantage was cleverly used in a different context for precise measurements of the 
acceleration of gravity by Vening Meinesz and others, who used pairs of pendulums 
set into free (no driving) anti-phase oscillation (Heiskanen & Vening Meinesz 1958). 

Blekhman (1988) also discusses Huygens's observations in his book, and he re- 
counts the results of a laboratory reproduction of the coupled clocks as well as pre- 
senting a theoretical analysis of oscillators coupled through a common supporting 
frame. His model is similar to the one studied by Korteweg, except that Blekhman 
uses van der Pol oscillators rather than pendulums, so that his quantitative analysis 
includes both (weak) driving and damping effects. Blekhman was primarily moti- 
vated by the general aspects of synchronization phenomena found in a wide vari- 
ety of physical systems, and it is probably for this reason that he chose to use 
van der Pol oscillators. He predicted that both in-phase and anti-phase motions 
are stable under the same circumstances (that is, the two are coexisting attrac- 
tors). Somewhat puzzling is that he reports observing both states in the exper- 
imental reproduction: while this agrees with his predictions for the van der Pol 
system, Huygens (so far as we know) never mentioned stable in-phase synchroniza- 
tion. 
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3. Experimental realization and results 

We re-examine Huygens's synchronization observations in an experiment with two 
pendulum clocks mounted side by side on a single wooden beam (figure 1). The 
pendulum clocks are commercially available spring-wound time pieces (Model 771- 
000, Uhrenfabrik Franz Hermle & Sohn, Gosheim, Germany). Each clock contains a 
14.0 cm pendulum (with a nominal frequency of 1.33 Hz) of mass m = 0.082 kg; the 
pendulum is coupled to an anchor escapement, which enables the clock movement 
to function with small angular displacements of ca. 8? from vertical. The beam is 
mounted on a low-friction wheeled cart (Model ME-9454, Pasco Scientific, Roseville, 
CA). The combined system of clocks, beam and cart is placed atop a slotted track 
(ME-9429A, Pasco Scientific), which permits the system to translate freely in a 
direction parallel to the beam. The total mass of the cart and clocks without the 
pendulums is M. Weights are added to and removed from the cart to change M 
and, thereby, to change the system mass ratio L = m/(2m + M). The motion of 
each pendulum is monitored by tracking a laser beam reflected from the pendu- 
lum suspension using a position-sensing detector (Model 1L30, On-Trak Photonics, 
Lake Forest, CA). The lasers and detectors (not shown in figure 1) are mounted 
on the system, permitting measurement of each pendulum's angular position in the 
system reference frame. The voltage signal from each detector is recorded using a 
computer-based data-acquisition system; complex demodulation of the signals yields 
measurement of each pendulum's oscillation amplitude, frequency and phase as a 
function of time. 

The clocks synchronize in anti-phase when the system mass ratio Au is compara- 
ble with that reported by Huygens (figures 1 and 2). In this case, the anti-phase 
state is the attractor when the system begins from any 'good' initial condition, 
which ensures that each clock is initially functioning. (Starting one pendulum at 
rest with zero angular displacement is an example of a 'bad' initial condition; the 
energy exchange between the coupled pendulums is not sufficient to jump-start a 
pendulum whose initial amplitude is too small to engage the escapement.) Con- 
sider, for example, the case where the system starts at rest with both pendulums 
having equal amplitude, in-phase angular displacements (figure 1). The approach to 
the anti-phase state is slow, occurring over the course of several hundred pendulum 
oscillations (figure 2a). The phase difference a = a, - a2 exhibits some overshoot, 
and small, slow variations in 'a about 7r persist indefinitely. The complex demod- 
ulated pendulum amplitudes A1 and A2 initially exhibit slow, approximately out- 
of-phase oscillations in a manner characteristic of beating between weakly coupled 
linear oscillators (figure 2b). These beating oscillations are damped and, eventually, 
the amplitudes become nearly steady and approximately equal as a gets close to 
7r. During this evolution, the amplitude of the cart's motion is typically very small 

(ca. 0.1 mm). 
Stable anti-phase synchronization requires the pendulum clocks to be very closely 

matched in frequency. For example, anti-phase synchronization is observed with t, = 
0.0063 when the difference between the natural frequencies of the clocks is 0.0009 Hz. 
By simply exchanging the pendulum bobs between these two (very similar but not 

identical) clocks, this frequency difference is increased to 0.0045 Hz and anti-phase 
synchronization no longer occurs. Instead, the two clocks run 'uncoupled' at their 
individual frequencies. 
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Figure 3. Probability of observing stable anti-phase oscillations as a function of mass ratio ,u for 
the clock system that begins at rest with both pendulums having in-phase angular displacements 
of equal amplitude. In this range of p, only two asymptotic states are observed: anti-phase 
oscillation and beating death. 

When ,u is sufficiently increased, we find that some initial conditions can lead 
to a state, which we call 'beating death', where one or both of the clocks cease to 
function (figure 3). If the angular displacement of either pendulum clock falls below a 
minimum threshold, the escapement mechanism can no longer engage, the pendulum 
seizes, and the clock stops. When the pendulums start from rest with in-phase angular 
displacements of equal amplitude, anti-phase oscillations are always observed for 
,u < 0.0083, while the clocks typically stop for ,u > 0.0125. At intermediate values of 
/,, either state may be the attractor of the system, depending on slight differences in 
the initial conditions. Additionally, as a function of ,, the system exhibits hysteresis, 
which may be due in part to the dependence of the track friction on the mass loading 
of the system. 

We believe that our clock system contains the same essential ingredients as Huy- 
gens's clock system. In both cases, the clocks are mounted on a common support 
whose motion provides weak coupling. Dissipation is also weak both in Huygens's 
clocks and ours; in our case, we estimate the relative energy loss per oscillation is 
ca. 3%. Both systems of clocks are kept out of equilibrium by the inherently nonlinear 
driving from small impulsive kicks applied by the escapement mechanisms when the 
pendulums' displacement amplitudes exceed a threshold value. Of course, Huygens's 
clocks differ in certain details that are qualitatively unimportant as follows. 

(a) Huygefis's clocks were driven by falling weights; ours are spring driven. 

(b) Huygens's clocks used a verge escapement, which required large displacements 
amplitudes of ca. 25? to function; our clocks use a newer (invented in the 1670s) 
anchor design, which enables clocks to function with smaller amplitudes. 
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(c) The length of Huygens's oscillating pendulums was continually varied by con- 
fining the suspension of each pendulum between cycloidal-shaped boundaries; 
our pendulums oscillated with a fixed suspension length. 

4. Theory: model and analysis 

We consider the three-degree-of-freedom model depicted in figure 4. Two plane pen- 
dulums hang from a common rigid frame which is constrained to move in one dimen- 
sion. The pendulums are identical, each consisting of a point mass hanging from a 
massless rigid rod. In the absence of damping and driving, the Lagrangian is 

= (M + 2m)X2 + mXe(cos 01i1 + cos 2 02) + mi2 (12 + -2) 

+ mge(cos 1 + cos 02) - 1KX2, (4.1) 

where qk is the angular displacement of the kth pendulum about its pivot point, 
X is the linear displacement of the platform, m is the pendulum mass, M is the 
platform mass, g is the acceleration due to gravity, f is the pendulum length, and 
the overdot denotes differentiation with respect to time. We take the platform motion 
to be weakly bound by a harmonic restoring force, since in Huygens's experiments 
the common supporting beam was confined. In our experiments the platform is free 
to slide, so that K = 0. (In earlier experiments we included a confining force by 
mounting magnets on the platform base. The results were similar and for practical 
simplicity we finally settled on the K = 0 design.) In the analysis to follow, we keep 
the harmonic restoring force to handle both cases, and to check that this difference 
is indeed a minor detail. 

We also add viscous damping to the pendulums and the platform, and a driving 
mechanism to model the clocks escapements. The governing equations of motion 
become 

k + b)k + sin k = -X cos (k + fk, (4.2) 

(M + 2m)X + BX + KX = - me(sin 0k); (4.3) 
3 

where b and B are friction coefficients. The clock mechanism, represented by fk, 
provides the energy needed to keep the clock running (see below). 

It is convenient to write the differential equations in dimensionless form, introduc- 
ing a scaled position Y = X/? and time r = t g/?, so that 

?k + 27^q + sin qk = -" cos Ok + fk, (4.4) 
Y" + 2FY' + Q22y = -_(sin 01 + sin ?2)", (4.5) 

where y = b ?/4g, F = BV/4g/(M + 2m), Q2 = K/(M + 2m), = m/(M + 2m), 
and the prime denotes differentiation with respect to r. The system mass ratio / = 

m/(M + 2m) controls the coupling strength and is a key parameter in our analysis. 
Rather than develop a detailed model of the escapement mechanism (Lepschy et 

al. 1992), we use a simple impulse rule: when the pendulum reaches a threshold angle 
?0, the angular velocity reverses direction and its magnitude changes according to 

Ilkl -+ (1-c)l|kl + 6, (4.6) 
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F 
Figure 4. Sketch of model coupled-pendulum system. 

where c and e are small positive constants. Our choice of impulse rule is loosely based 
on the two-part action of the escapement, which first engages at a fixed angle and 
then delivers a kick on the downswing as the anchor hits. Since we are interested in 
the heavy platform limit M > m, we ignore the reaction force on the platform. 

In what follows, we consider small-angle swings only. Even so, the problem is 
nonlinear due to the impulsive kicks. Between kicks the dynamics is linear, however, 
and the motion can be decomposed into a superposition of independent normal mode 
oscillations. We exploit this below in deriving a Poincare map, alternately applying 
the normal mode evolution and the instantaneous effect of the kicks. 

Before turning to a derivation of the iterative map, we pause to present a simple 
explanation of Huygens's observation. Introducing sum and difference variables, a = 
0i + 02 and 5 = 0 - 02, equations (4.4) and (4.5) become, for small oscillations and 
between kicks, 

" + 25y' + = 0, (4.7) 
a" + 2rya' + a = -2Y", (4.8) 

Y" + 2FY' + 22Y = -_L". (4.9) 

Only the sum coordinate couples to the platform motion. Thus, the damping in the 
platform affects a but not 6. To take the most extreme situation, if the pendulums 
were free of friction (i.e. y = 0), the coordinate a would still damp out; only S 
survives, and this corresponds to pure anti-phase motion, just as Huygens observed. 

This argument is instructive, and has the essential ingredients, but is incomplete 
since it ignores the energy input altogether. Without the kicks, the amplitude of the 
surviving (anti-phase) oscillations would depend on the initial conditions (contrary 
to observations) and for nearly in-phase initial conditions the anti-phase amplitude 
would be so small that the clock escapement would not engage, so that the anti-phase 
state would be unsustainable even in principle. 

Nevertheless, the normal modes play a central role in the analysis that follows. 
Using the (complex) notation 6(t) = Sjeiwjt, a(t) = ajeiwjt and Y(t) = Yjeiwit to 
define the jth mode, we can determine the three mode frequencies wj and the corre- 
sponding mode coordinates !fj. One mode follows from the decoupling of the differ- 
ence coordinate: 

i = 1 + i-y, 1i = (5, a, Y) = (1,0, 0). (4.10) 
This describes pure anti-phase motion with decay rate Im(wo) = 7. Here and in 
what follows, we will assume for convenience that the damping is weak (7 << 1) 
and so neglect terms of order y2. The exact expressions for the other two modes are 
cumbersome, but for our purposes it is enough to develop them as a power series in 
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the mass ratio /L. We find 

2 = 1 + i- + i t(1 + 2i(- + r)), l2 = (0, 1, d[1 - 2id(F - 927)]) (4.11) 

and 

W3 = Q + iF + O(,), !'3 = (0, 22, 1) + O(/), (4.12) 

where d-1 = Q2 - 1, and we have written these in a form suitable for the case where 
the platform is underdamped (Q > F). In fact, this is not a necessary assumption. 
We only want to avoid the resonant case Q = 1 when the platform frequency matches 
the pendulum frequency, so we assume either the frequencies do not match or the 
platform motion is overdamped. 

Consideration of the mode structure allows us to simplify our analysis. First, since 
we want to consider the situation where the platform has 'imperceptible movements', 
Y is small. But the only linear combinations of the three modes Ej cj!j which yield 
a small value for Y have an equally small amount of the third mode, c3/c2 O(u). 
This means that the third mode is barely excited. Second, the remaining modes 1i 
and @2 are only O(/) different from 6 and a, respectively. Thus, if a kick from the 
escapement mechanism boosts the value of q1, say, then to leading order in A it 
affects modes @1 and @2 and not @3. 

Together, these observations allow us to ignore the third mode, thereby reducing 
the problem to two degrees of freedom. We now proceed to construct a Poincare map 
in the reduced, four-dimensional phase space, which is spanned by the coordinates 
(q1i, 44, q22, 4).- Our strategy is to exploit the weakness of the damping and coupling. 
During one oscillation, we imagine that each pendulum executes a nearly free har- 
monic orbit, and then compute the small changes due to the damping and driving. 
Thus, we define 

qj = Aj sin(r + aj), j = 1, 2, (4.13) 

where the iterative map describes updates in the amplitudes Aj and phases aj. In 
the phase plane for each pendulum, one can picture the free orbit as uniform motion 
around the circle of radius Aj, except that when it reaches the positions qj -= 
when ^/ > 0 and q)j = -0 when 0' < 0, the pendulum suddenly changes sign due 
to the kick from the clock mechanism (see figure 5). During the remaining motion 
there is energy loss due to friction. 

The map we will derive considers the moment when the first pendulum passes 
through its lowest point moving to the right, so the Poincare section is q1 = 0, 
41 > 0. We consider in turn the effect due to (1) the damping and (2) the four 
impacts with the clock mechanisms (two impacts per pendulum per cycle). 

(a) Damping 

The effect of damping is most easily expressed by using the normal mode co- 
ordinates, which are to leading order just the sum and difference combinations ca 
and 6. Introducing the 'polar' representation corresponding to equation (4.13), we 
can write 

a = A+ sin(r + a+), (4.14) 
6 = A_ sin(T + a-), (4.15) 
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where 

A2 = A, + A2 ? 2A1A2 cos(al - a2), (4.16) 

tana? = 1 
sin a1 A2 in a 

(4.17) 
A1 cos al ? A2 cos a2 

and so 

4A2 = A2 + A2- ? 2A+A_ cos(a+ - a_), (4.18) 

A+ sin a+ ? A_ sin a_ 
tanc^ - , (4.19) 

A+ cos a+ ? A_ cos a-_ 

where the upper signs correspond to j = 1 and the lower signs to j = 2. 
The normal modes evolve independently, with the real and imaginary parts of 

each mode frequency determining the time variation of the mode amplitude and 
phase, respectively. If we denote the mode frequencies by w+ and w_ for in-phase 
and anti-phase, respectively, over one oscillation we have A+ - (A+, A_ -+ vA_, 
and (a+ - a_) -X (a+ - a_) + 3, where the constants J, v and 3 are 

e-2 Im 
w+, (4.20) 

v = e-27 Imw1, (4.21) 

/ = 27r Re(w+ - w_). (4.22) 

One can work out what this corresponds to in terms of the variables (A1, A2, a1, a2) 
using equations (4.18) and (4.19). Denoting the new values by a tilde, the result is 

4A2 = (~ + -)2A + ( - v2A 2(A+ 2(2 - V)AiA2 cos a + /34vA1A2 sin a, (4.23) 

4A2 = ( 2 - )2A2 + (I + v)2A2 ( 2(2 - V2)A1A2 cos a - /4vA1A2 sin a, (4.24) 

2tan[2AA2 sina + O(A21 - A2)] 

(2 _ ,2)(A2 + A2) + 2(22 + u2)A1A2 cosa (4.2 

where 
a = al - O2 (4.26) 

and we have kept terms to first order in 3/. Physically, /3 is the coupling-induced 
frequency shift between the otherwise degenerate normal modes, which of course is 
small for small coupling. Subtracting the old values from the new ones, we get 

AdAj = Aj - Aj, (4.27) 
Ada = a - a, (4.28) 

where the notation Ad indicates the changes due to damping in the amplitudes and 
the phase differences. 

(b) Impacts 

Since the impacts 'truncate' the free orbit near the turning points, the pendulum 
periods are less than 27r (figure 5). This amounts to advancing the phases aj. The 
situation is particularly simple if considered in terms of the single-oscillator phase 
space: the time taken to traverse the truncated orbit is directly proportional to the 
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Figure 5. Phase portrait of single 'free' orbit truncated at bj = ?P. 

perimeter of the truncated circle, so that it takes a time T = 4 arcsin(O/Aj) for the 
jth pendulum to return to the section. With Ai indicating the changes due to the 
impacts, the change in aj is 

Aiaj = 27r - 4arcsin(P/Aj), j = 1,2, (4.29) 

so that 
Aio = Ziol - Aia2. (4.30) 

The effect on the amplitudes can be calculated by energy considerations. Noting 
that q2 + 0'2 = A2 is constant over the unperturbed orbit, the angular speed at 

?j = ?i is 

I|.=J 
- =?2. (4.31) 

Applying the impulse rule equation (4.6) twice, 

-+ (1 - c)[( - c) l + 6] + , (4.32) 

which gives the angular speed the instant after the second kick. Using equation (4.31) 
again gives the new amplitude, and thus the change due to the impacts: 

AiAj = {2 + [(1 - c)2A2 -2_ (2 + (2 -)] 

2 
- A. (4.33) 

These changes in phase and amplitude apply only if the amplitude is big enough 
to trigger the escapement, i.e. only if Aj > 0. 

(c) Analysis of the map 

Together, the contributions from the impacts and the damping give a three- 
dimensional return map for the coordinates (A, A2, a): 

A1 -+ A1 + iA1 + AdA1, (4.34) 

A2 - A2 + AiA2 + AdA2, (4.35) 
a - aC + AiC + Ada. (4.36) 

Proc. R. Soc. Lond. A (2002) 

574 



Huygens's clocks 

We can identify three fixed points, all of which have equal amplitudes (A1 = A2). 
One is the trivial solution A1 = A2 = 0. To find the other two, note first that if A1 = 
A2 then Aial = Aia2 from equation (4.29) and AiA = AiA2 from equation (4.33). 
Meanwhile, in equations (4.23) and (4.24), setting a = 0 or 7r and A1 = A2 implies 
A1 = A2, while taking A1 = A2 and the limit a -+ 0 or 7r in equation (4.25) yields 
& -+ 0 or 7r, respectively. Thus, we have two non-trivial fixed points, one with a = 0 
and the other with a = r. These are the in-phase and anti-phase states, respectively. 

Before we discuss the behaviour of the full three-dimensional map, it is useful to 
consider the special case A1 = A2 > 0 and 3 = 0. We can get a fairly complete 
picture in this case. The subspace A1 = A2 is invariant and contains the fixed 
points identified above. Moreover, the phase difference a obeys its own map. From 
equation (4.29) we see that a is unchanged due to the impulsive kicks, and from 
equation (4.25) that the amplitudes cancel out, leading us to the one-dimensional 
map 

= arctan{( 2 2v 
sin a (4.37) 

-=arctan 
(2 - _/2) + (~2 + ,2) COS } 

For any C, v, there are exactly two fixed points, a = 0 and 7r. These are just the 
non-trivial fixed points already identified. By looking at the slope of this map one 
readily shows that a = 0 is locally unstable and a = 7r is locally stable, for all allowed 

v. 
There is an alternative way to analyse the equal-amplitude case which allows us to 

make a stronger statement about the stability of the anti-phase state. The argument 
focuses directly on the mode energies, which gives it a certain conceptual advan- 
tage. The mode energies are proportional to the squared amplitudes A+. Setting 
A1 = A2 = A in equation (4.16) yields 

A2 = 2A2(1 ? cos(al - a2)). (4.38) 

Now, we have established (cf. equation (4.29)) that if A1 = A2, the impulses do not 
affect a. Thus, if the impulse causes an amplitude change A - A + AA, we have 
from equation (4.38) 

A + AA 
A? - A A?, A 

which says that A+ and A_ are scaled by the same factor. Meanwhile, frictional 
damping also acts to scale A+ and A_: 

A+ -+ JA+, A_ - vA_, 

where 0 < ~ < v < 1. Taken together, the two contributions yield the map 

A+ =(l+ A A+, (4.39) 

A_=v(i f+ )A_. (4.40) 

Note that this does not give an explicit description of the system's evolution, since A 
itself is a dynamical variable. Nevertheless, it is enough to draw the strong conclusion 
that the anti-phase state is globally attracting (within the equal amplitude subspace). 
This follows because, since ~ < v, proportionately more energy is drained out of the 
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in-phase mode than is put into it, in all cases except if the system is perfectly in-phase 
(and so A_ = 0). 

Let us return now to consider the full three-dimensional map. Numerical simula- 
tions of the three-dimensional map reveal that the anti-phase state and the trivial 
state are asymptotically stable, while the in-phase state is unstable, consistent with 
Huygens's observations (and ours). As already noted, / is the frequency difference 
between the two normal modes; when 3 0, the main effect is the introduction of 
beats, which eventually damp out (see figure 2). Because of these, even if the pendu- 
lums initially have the same amplitude, this property does not persist. Nevertheless, 
the beating merely introduces a transient which serves to decorate the main trends 
in the system's evolution, i.e. those trends which we previously deduced by setting 
p = 0, without affecting the long-term behaviour. 

The map behaves very similarly to our experiments and Huygens's observations. 
Figure 2 shows a typical situation: even when started close to the in-phase state, the 
system evolves into the anti-phase state, with damped beating behaviour in both 
the amplitudes and the phase difference. More generally, the model qualitatively 
reproduces the important features of the experimental data, though there are some 
differences. The chief discrepancy is that the model shows a much smaller modulation 
of the amplitudes, a property that can be traced to the sharp impulse mechanism 

(see equation (4.6)). 
This is not the end of the story, however. Simulations reveal another type of 

attracting state, where one pendulum oscillates but the other does not; we call this 
behaviour 'beating death' because beating plays an important role in determining 
the final dynamical state. Beating death happens when the pendulum amplitudes 
get very close to the escapement threshold 0. If both pendulums have sub-threshold 
amplitudes, there is no energy input and the system is attracted to the trivial state 
A1 = A2 = 0. However, if the two amplitudes are slightly larger than 0, the beating 
can introduce a large enough difference between the two so that the motion of one 
pendulum dies out while the other does not. This type of final state is also observed 
in our experiments when the coupling is sufficiently strong. 

Drawing everything so far together, we find that depending on initial conditions the 
system ends up either in the anti-phase state or in beating death. The latter occurs 
more often the greater the coupling, all other parameters held fixed. We can estimate 
when we expect to observe beating death with significant probability by considering 
the in-phase solution (for which damping effects are greatest) with A1 = A2 and 
computing the value of the common value A: when this falls below 0 the motion 
cannot be sustained. This leads to the following condition for beating death: 

-(2 - c)2e2 - 27ry - 47r(- + F) < 0. (4.41) 
20 

The first term is the amplitude boost due to the clock mechanism (when A = 0), 
the rest is the amplitude loss due to friction in pendulum and platform. It is the p- 
dependent term that is interesting from the point of view of Huygens's observations, 
since presumably his clocks were run under the condition that, in isolation, each 
clock maintains its oscillations. We see plainly that for large enough u the condition 
for quiescence is satisfied. 

Finally, we consider the effect of non-identical clocks. With identical pendulums, 
the anti-phase state is attracting for arbitrarily small values of p,. However, in general 
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Figure 6. Phase diagrams summarizing theoretical analysis: 
(a) A-pu parameter plane; (b) r-p, parameter plane. 

one expects that two oscillators with different natural frequencies will not frequency 
lock unless the coupling exceeds some minimum threshold value. We can get an esti- 
mate of this threshold by the following argument. Assuming that the amplitudes 
are very nearly equal, and that the beating parameter f is sufficiently small that 
they stay nearly equal, the relative phase evolves according to the map (see equa- 
tion (4.37)) 

= + arctan ( _ 2)+(2 + 2)si 
a 

(4.42) 

where a constant A has been added to account for the difference in pendulum fre- 
quencies. (More specifically, if these frequencies differ by an amount p, then in the 
uncoupled case a advances by an amount pT, where T is the mean period.) As the 
detuning is increased, the a = 0 fixed point shifts up and the a = 7 fixed point shifts 
down, until they coincide at the critical detuning A, beyond which the pendulums 
are not frequency locked. Since both C and v differ only a little from unity, we can 
find Ac by setting a = r/2 in equation (4.42), with the result 

n 
- 

. (4.43) 

For example, taking 22 << 1, this becomes 

Ac = 47ru(F + y). (4.44) 

5. Discussion and serendipity 

Figure 6 summarizes our theoretical results. The figure depicts which of the three 
types of attracting states predominate as a function of system parameters. The state 
labelled 'quasiperiodic' refers to the case where the pendulums run at different fre- 
quencies. Near each boundary the system can end up in one or other state depending 
on initial conditions. We have made two plots in order to piece together the full pic- 
ture as a function of the three key parameters. In figure 6a, we hold the platform 
damping r fixed, and vary the detuning A and coupling strength p. The anti-phase 
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regime exists only if the detuning is small enough, consistent with our experimental 
observations. Figure 6b shows the situation for fixed A, as a function of F and p. 
The anti-phase state sits in between the quasiperiodic and 'death' states. It is worth 
noting that as we vary the platform weight M, the path followed by our experi- 
ments is not strictly parallel to the p-axis because varying M also mildly affects the 
dimensionless damping r (figure 6b). 

Our results suggest that Huygens's observation of 'sympathy' depended on both 
talent and luck. The clock boxes were weighted by some 100 lb of lead in order 
to keep them upright in stormy seas. If they had not been, the mass ratio would 
have been too large, making the coupling too strong, and eventually stopping the 
clocks. Neither would his observation have been possible if the coupling was too 
weak, since the small but inevitable difference in the clock frequencies would prevent 
frequency locking. Only clocks with sufficiently close frequencies could fall into anti- 
phase lock-step. As it happened, Huygens's own inventions-and the clockmaker S. 
Oosterwijck's craftsmanship-made such exquisite matching possible. 

We thank Don Aronson, Chris Lobb, Raj Roy and Steve Strogatz for their help over the course 
of this work. 
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