

Tanah complex → need to learn and known about soil physical, *e.g.*:

Soil particle common ball
Soil pore is combine of capillary pipe
Soil is heterogenic

Soil solid dipengaruhi by: > Soil texture > Chemistry and mineralogy > Form and surface area of soil particle > Soil structure Between solid there are spaces → pore: 1. Macro pore → gas 2. Micro pore → water (moist)

Soil Particle Density (ρ_p), is solid density divided solid volume from soil $\int \rho_p = \frac{Mp}{Vp} \dots g \cdot cm^{-3}$ • PD : 2,6 - 2,7 g.cm⁻³, if OM content increases, PD decreases

Bulk Density ($\rho_{\rm b}$)

- Is solid (particle) density or called dry soil density divided total volume, including particle volume and pore volume
- pb smaller than pp, loam soil: 1,1 g.cm⁻³ and sandy soil: 1,6 g.cm⁻³
- Soil structure influences bulk density

Factors that influence Bulk Density (ρ_b) :

- 1. Soil tillage
- 2. Compaction
- 3. Texture
- 4. Structure
- 5. Water content
- This is used for calculation : irigation needs, fertilizing, soil tillage etc

$$\rho_b = \frac{Mp}{Vp + Vu + Va} g.cm^{-3}$$

Soil Porosity

- In soil, there are space between particles, commonly called soil pores
- Soil pores are generally partly filled with water and partially filled with gas
- Water availability, air for the plants and water moving in the soil have related with number and size of soil pores

19

17

20

- Jumlah dan komposisi ruang pori dalam tanah berbeda-beda dari suatu tempat dengan tempat lainnya.
- Demikian pula akan berbeda antara satu horizon dengan horizon lainnya.
- Jumlah dan komposisi ruang pori tanah dipengaruhi oleh tekstur dan struktur tanah.

Pore Size distribution

21

According to the total size of the pore space consists of:

- 1. Capillary pore, can hold water and its movement by capillary forces
- Non-capillary pore, water within the pore space is movable as a percolation of water called drainage pore

 I.	TASK If Bulk Density = 1,1 gr/cm3, soil depth = 20 cm. How much weight the land area of 1 hectare?
2.	If Particle Density = 2,5 gr/cm3, how much is total porosity?
3.	If a experiment about influence of urea fertilizer on chili yield needed 10 kg/pot (BD = 1,1 gr/cm3). Urea dose is 200 kg/ha. How many grams of urea fertilizer requirements for each pot?
No	ote: no 1, 2 and 3 are related

