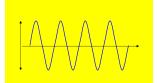

Bab VI Controller (Pengendali)

6.1 Pendahuluan 6.2. Pengendalian On - Off 6.3. Pengendalian Proporsional 6.4. Pengendalian Integral dan Derivatif

6.1. Pendahuluan

- >Controller merupakan bagian terpenting dalam proses pengendalian umpan
- Dari 4 langkah utama pengendalian (mengukur, menghitung, membandingkan, dan mengoreksi), 2 langkah (membandingkan dan menghitung) berada di control unit.


Mekanisme pengendalian di controller (unit control)

- Mekanisme pengendalian dalam controller terdiri dari 2 langkah utama, yaitu Pembandingan dan Pengendalian.
- Langkah awal adalah membandingkan hasil pengukuran dari alat ukur dengan nilai yang diinginkan (set point) Menghitung selisih keduanya yang disebut error, ε = ysetpoint ypengukuran
- Jika error tidak terdeteksi, maka tidak ada aksi, karena nilai variabel terkontrol sama dengan nilai yang diinginkan
- Jlka error terdeteksi, controller segera beroperasi untuk mensetting control valve supaya error menjadi minimal dalam waktu yang sesingkat mungkin dan gangguan gangguan pada sistem menjadi minimal.

6.2. Pengendali On – Off

- Pengendali ini bekerja pada 2 posisi saja, yaitu posisi "on" dan posisi "off".
- · Control Valve dengan sistem pengendalian on - off hanya akan bekerja pada terbuka penuh atau tertutup penuh

Dinamika Proses

Kelebihan dan Kekurangan

- Kelebihan
 - murah dan sederhana
- Kekurangan

proses variabel akan bergelombang (berosilasi) dan tidak akan stabil. Sehingga hanya cocok untuk sistem yang dapat mentolerir fluktuasi variabel proses.

6.3. Pengendali Proporsional

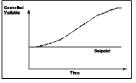
- Pengendali Proportional merupakan pengendalian yang paling sederhana dan paling banyak digunakan untuk model pengendalian kontinyu.
- Pengendali akan menghasilkan suatu output yang proporsional dengan besarnya error. Jika nilai error besar, maka nilai output juga akan besar, begitu juga sebaliknya.

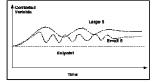
• Persamaan $V = K\epsilon + V_{\nu}$

Dengan

V adalah nilai output controller karena ada error.

 $\varepsilon = S - L$


L adalah nilai variabel terukur


S adalah nilai set point

K adalah proportional constant, disebut gain

Vo adalah nilai output controller jika tidak ada error.

Dinamika proses

Vaiabel proses sebagai fungsi waktu Tanpa pengendalian, jika ada gangguan Variabel proses sebagai fungsi waktu Pengendali Proporsional jika ada gangguan

Kelebihan dan kekurangan

Kelebihan

- · Sederhana dan disain mudah
- · Stabilitas baik
- · Respon cepat

Kekurangan

- Terjadi offset (selisih nilai set point dengan nilai variabel terkontrol sebagi hasil respon pada waktu tak terhingga)
- Terjadi osilasi (respon bergelombang)

6.4. Pengendali Integral dan Derivatif

- Pengendalian ini dilakukan untuk mengatasi kekurangan sistem pengendalian proporsional.
- Umumnya digunakan bersamaan dengan sistem pengendalian proporsional, atau kombinasi ketiganya (PI, PD, ID, PID)

Pengendalian Proporsional Integral

- Integral memberikan output yang proporsional dengan integral waktu error.
- Kadang disebut reset control.
- Penggunaan Pengendalian Integral umumnya bersamaan dengan Pengendalian Proporsional disebut Pengendalian PI
- Keuntungan utama Pengendalian PI adalah dapat menghilangkan offset
- Kekurangannya adalah memberikan nilai deviasi yang maksimum, waktu respon lama, dan periode osilasi yang lebih lama dibandingkan dengan pengendalian proporsional.

Pengendalian Proporsional Derivatif

- Derivatif memberikan output yang proporsional dengan derivatif waktu error (dɛ/dt).
- · Kadang disebut rate control.
- Penggunaan Pengendalian Derivatif umumnya bersamaan dengan Pengendalian Proporsional disebut Pengendalian PD
- Penambahan derivatif adalah untuk menghilangkan osilasi yang berlebihan sistem pengendalian proporsional.
- Kekukangannya adalah offet tidak dapat hilang namun akan menjadi lebih kecil.

Pengendalian Proporsional, Integral dan Derivatif

Pengendalian PID mempunyai keuntungan antara lain :

- Menghilangkan offset karena adanya pengendalian integral
- Mengurangi deviasi maksimum dan waktu osilasi yang merupakan hasil gabungan pengendalian PI dan PD