Pendahuluan

1111

Prof. Drs. Sutarno, MSc., PhD.

Biology & Molecular Biology

- Biology is Study of Life
 >> Studying life at a molecular level is Molecular Biology → modern Biology
- The molecules of interest are
 - DNA,
 - RNA &
 - Proteins

Molecular Biology

- The field overlaps with other areas of biology, particularly genetics and biochemistry
- Molecular biology concerns itself with: understanding the interactions between the various systems of a cell, including the interrelationship of DNA, RNA and protein synthesis and learning how these interactions are regulated.

Cell Nucleus

 Nucleus is the control & Command center as is brain in, for example, a human body

Organisms Types

- Eukaryotes: Cells contain a membrane bound nucleus and organelles (plants, animals, fungi,...)
- Prokaryotes: Cells lack a true membranebound nucleus and organelles (single-celled, includes bacteria)
- Not all single celled organisms are prokaryotes!

Copyright @ Pearson Education, Inc., publishing as Benjamin Cummings.

Chromosomes

- Chromosomes are made up of Proteins and DNA
- DNA carries the genetic information
- This information is similar to digital
- information

Essential Molecules

- Proteins make up the cell matrix as well as carry out all biochemical reactions which sustain life as we know it
- So DNA & Proteins are both essential molecules of life

Nucleic Acids

- RNA (Ribonucleic Acid)
- DNA (Deoxyribonucleic Acid)

DNA

- The carrier of genetic information
- for all complex organisms.
- Long polymer consisting of 4 bases

Base, Nucleoside & Nucleotide

Nitrogenous bases: Ade

Adenine Guanine Cytosin Thymine uracil

- Nucleoside: Base + Sugar
- Nucleotide: Base + Sugar + Phosphate

DNA Chain

Base pairing in DNA double helix

The Double Helix

DNA molecules usually consist of two strands arranged in the famous double helix

Watson-Crick Base Pairs

The Double Helix

- each strand of DNA has a "direction"
 - at one end, the terminal carbon atom in the backbone is the 5' carbon atom of the terminal sugar
 - at the other end, the terminal carbon atom is the 3' carbon atom of the terminal sugar
- therefore we can talk about the 5' and the 3' ends of a DNA strand
- in a double helix, the strands are antiparallel (arrows drawn from the 5' end to the 3' end go in opposite directions)

Chromosomes

- DNA is packaged into individual chromosomes (along with proteins)
- prokaryotes (single-celled organisms lacking nuclei) have a single circular chromosome
- eukaryotes (organisms with nuclei) have a species-specific number of linear chromosomes
- DNA + associated chromosomal proteins = chromatin

Human Chromosomes

Genomes

- the term *genome* refers to the complete complement of DNA for a given species
- the human genome consists of 46 chromosomes.
- every cell (except sex cells and mature red blood cells) contains the complete genome of an organism

Proteins

- proteins are molecules composed of one or more *polypeptides*
- a polypeptide is a polymer composed of amino acids
- cells build their proteins from 20 different amino acids
- a polypeptide can be thought of as a string
- composed from a 20-character alphabet

Protein Functions

- structural support
- storage of amino acids
- transport of other substances
- coordination of an organism's activities
- response of cell to chemical stimuli
- movement
- protection against disease
- selective acceleration of chemical reactions

Amino Acids

Alanine	Ala	А
Arginine	Arg	R
Aspartic Acid	Asp	D
Asparagine	Asn	N
Cysteine	Cys	с
Glutamic Acid	Glu	E
Glutamine	Gin	Q
Glycine	Gly	G
Histidine	His	н
Isoleucine	lle	1
Leucine	Leu	L
Lysine	Lys	к
Methionine	Met	М
Phenylalanine	Phe	F
Proline	Pro	Р
Serine	Ser	s
Threonine	Thr	т
Tryptophan	Тгр	w
Tyrosine	Tyr	Y
Valine	Val	v

Amino Acid Sequence of Hexokinase

				5					10					15					20					25					30	
1	A	A	8	х	D	х	8	\mathbf{L}	v	Ε	V	H	х	х	v	F	I	v	P	${\bf P}$	X	I	\mathbf{L}	Q	A	v	v	S	I	А
31	Т	т	R	х	D	D	х	D	8	λ	λ	A	8	Ι	P	M	V	\mathbf{P}	G	W	v	L	ĸ	Q	v	х	G	S	Q	А
61	G	8	F	L	A	I	v	M	G	G	G	D	L	P	v	I	L	I	х	\mathbf{L}	A	G	Y	Q	E	8	8	I	х	А
91	8	R	8	L	A	A	8	M	X	т	Т	A	I	P	S	D	\mathbf{L}	W	G	N	х	λ	x	a,	N	A	A	F	S	s
121	х	R	F	8	8	х	A	G	8	V	\mathbf{P}	\mathbf{L}	G	F	т	F	х	E	A	G	A	R	E	х	v	I	ĸ	G	Q	I
151	Т	х	Q	λ	х	A	F	8	\mathbf{L}	λ	х	\mathbf{L}	х	ĸ	\mathbf{L}	I	8	A	M	X	N	A	x	F	P	A	G	D	х	х
191	х	х	v	λ	D	I	х	D	8	н	G	I	\mathbf{L}	х	х	۷	N	Y	т	D	A	х	I	K.	М	G	I	I	F	G
211	8	G	v	N	A	A	Y	W	С	D	8	Т	х	I	A	\mathbf{D}	λ	A	D	A	G	х	x	G	G	A	G	х	M	х
241	v	\mathbf{C}	\mathbf{C}	х	Q	D	8	F	R	ĸ	λ	F	P	8	\mathbf{L}	\mathbf{P}	Q	I	х	Y	х	х	т	L	N	х	х	S	Р	х
271	A	х	ĸ	Т	P	E	K	N	S	х	λ	ĸ	N	х	G	Q	8	\mathbf{L}	R	D	V	L	M	х	Y	ĸ	X	х	G	Q
301	x	H	х	х	х	A	х	D	P	х	λ	A	N	v	B	N	S	8	Y	P	A	R	I	Q	K.	\mathbf{L}	P	H	F	\mathbf{D}
331	\mathbf{L}	R	X	х	х	\mathbf{D}	\mathbf{L}	F	X	G	D	Q	G	I	A	х	ĸ	Т	х	М	ĸ	х	v	v	R	R	x	\mathbf{L}	F	\mathbf{L}
361	I	A	A	Y	A	F	R	L	v	V	\mathbf{C}	х	I	х	A	I	\mathbf{C}	Q	ĸ	K	G	Y	8	8	G	H	I	λ	λ	х
391	G	3	X	R	D	Y	8	G	F	8	х	N	8	A	т	х	N	х	N	I	Y	G	W	P	Q	8	A	х	х	8
421	ĸ	P	I	х	I	Т	P	A	I	D	G	E	G	A	A	х	х	v	I	x	8	I	A	8	8	Q	x	х	х	А
451	х	х	S	А	х	\mathbf{X}	А																							

Genes

- genes are the basic units of heredity
- a gene is a sequence of bases that carries the information required for constructing a particular protein (polypeptide really)
- such a gene is said to encode a protein
- the human genome comprises ~ 35,000 genes
- Those genes encode > 100,000 polypeptides

RNA

- RNA is like DNA except:
 - backbone is a little different
 - usually single stranded
 - the base uracil (U) is used in place of thymine
 (T)
- a strand of RNA can be thought of as a string composed of the four letters: A, C, G, U

Transcription

Transcription

- RNA polymerase is the enzyme that builds an RNA strand from a gene
- RNA that is transcribed from a gene is called *messenger RNA (mRNA)*

The Genetic Code

	Second letter													
		U	С	А	G									
First letter	U	UUU UUC UUA UUA UUG	UCU UCC UCA UCG	UAU UAC Tyr UAA Stop UAG Stop	UGU UGC UGA Stop UGG Trp	U C A G								
	с	CUU CUC CUA CUG	CCU CCC CCA CCG	CAU CAC CAA CAA CAG Gin	CGU CGC CGA CGG	U C A G	Third							
	A	AUU AUC AUA AUG Met	ACU ACC ACA ACG	AAU AAC AAA AAG Lys	AGU AGC AGA AGG AGG	U C A G	letter							
	G	GUU GUC GUA GUG	GCU GCC GCA GCG	GAU GAC GAA GAA GAG GIU	GGU GGC GGA GGG	U C A G								

DNA Genetic Code Dictates Amino Acid Identity and Order

Translation

- ribosomes are the machines that synthesize proteins from mRNA
- the grouping of codons is called the reading frame
- translation begins with the start codon
- translation ends with the stop codon

Codons and Reading Frames

Protein Synthesis in Eukaryotes vs. Prokaryotes

Genes include both coding regions as well as control regions

