List of Algorithm in Exhaustive search

Putranto

July 22, 2016

Algorithm 1: Hamming distance between two vector (hamdist)

Input: vector v and v (same length)
Output: hamming distance of v and v

Algorithm 2: Check for three consecutive 1’s (cekcons1)

Input: a binary vector v
1 n + length(v);
2 fori+ 0ton—2do
t < [vi,Vit1, Vito] if sum(t) = 3 then
‘ return true
else
L return false

(=B B Y]

Algorithm 3: Check for three consecutive 0’s (cekcons0)

Input: a binary vector v
1 n < length(v);
2 fori+ 0ton—2do
t < [vi,Vit1, Vito] if sum(t) =0 then
‘ return true
else
L return false

(=B, B Y]

Algorithm 4: Check for balancedness of a vector (isbalance)

Input: binary vector v
nl < number of 1’s in v;
n0 <~ number of 0’s in v;
if n1 = n0 then

‘ return true;
else

L return false;

o U A W N

Algorithm 5: Check for similarity of two vector (isidentic)

Input: two vector with same length: u, v
1 if u = v then
2 ‘ return true
3 else
4 L return false

Algorithm 6: Check rows for 1% and 3"¢ constraint satisability
(checkforconsrow)

Input: matrix A
1 for a in rows of A do

2 if cekconsO(a) = true or cekconsl(a) = true or isbalance(a) =
false then
3 L return false

4 return true

Algorithm 7: Check a matrix for 15 and 3" constraint satisability
(checkforcons)

Input: a matrix A representing binary puzzle

1 if checkforconsrow(A) = false or checkforconsrow(AT) = false
then

2 ‘ return false

3 else

4 L return true

Algorithm 8: Forced move for columns w.r.t. 374 constraint
(partdistinctrow)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)

1 for a in rows of A do

2 n1 < number of 1’'s in a ;

3 ng < number of 0’s in a ;

4 Nplank < number of blanks in a ;

5 if npienk = 2 and ny = ny then

6 for b in rows in A\ a do

7 if hamdist(a,b) = 2 then

8 L L igyomi —b;; /* replace blank cell a; */

Algorithm 9: Iteratively forced move for matrix w.r.t. 3"¢ constraint
(partdistinct)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)
B <« partdistinctrow(A);
BT « partdistinctrow(BT);
if B = A then
‘ return B
else
L partdistinct(B)

[B B N

Algorithm 10: Forced move a vector w.r.t. 2"? constraint (partbal)

Input: a vector v with even length.
ng < number of 0’s in v ;
Nplank < number of blanks in a ;
m length(v)/z;
if Nplank = 1 then
if ng = m then
‘ Vippams = 1
else
L Viptank = 0

return v

®» N 0 A W N

©

Algorithm 11: Forced move a matrix w.r.t. 2"¢ constraint (£il12cons)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)
1 for a in rows of A do
2 L partbal (a)

3 for a in columns of A do
4 L partbal (a)

Algorithm 12: Forced move a matrix w.r.t. 2" constraint (fill2consB)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)
B+ fill2cons(A4) ;
if B = A then
‘ return B
else
L return fill2consB(B)

[S O N

Algorithm 13: Forced move a vector w.r.t. 1°¢ constraint (partnocons)

Input: a vector v with length 3
n1 < number of 1’s in v ;
ng < number of 0’s in v ;
Nplank <— number of blanks in v ;
if npane = 1 and ny = 2 then
‘ Viviant = 0
else if nygnr = 1 and ng = 2 then

L Vippam = 1

N 0 Gk W -

Algorithm 14: Forced move a matrix w.r.t. 15 constraint (fillicons)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)
nr < number of rows in A ;
nc < number of columns in A ;
for a in rows of A do
for i in [0---nc—3] do
L L partnocons([ali], a[i + 1], a[i + 2]])

[BV I S

for a in columns of A do
L for i in[0---nr—3] do

®» I o

L partnocons([ali], a[i + 1], a[i + 2]])

Algorithm 15: Forced move w.r.t. 1% constraint (fi111consB)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)
B+ fillicons(A) ;
if B = A then
‘ return B
else
L return filllconsB(B)

[NV I S

Algorithm 16: Forced move w.r.t. all constraint (solvepartl)

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)
B =filliconsB(A) ;
B =fill2consB(B) ;
B = partdistinct(B) ;
if B= A then
| return (B)
else
L return (solveparti1(Al))

B =R S VU R

Algorithm 17: Wrapper for puzzle guessing (solvepart2)

Input: a matrix A representing binary puzzle, history_of_changed_cell,
guess_counter

Fill a blank cell in A with either 0 or 1 ;

B + solveparti(A4) ;

guess_counter+ = 1;

history_of_changed_cellgyess_counter <list of changed and guessed cells;

return B, history_of_changed_cell, guess_counter

[B VN

Algorithm 18: Wrapper for binario solver (solvepuzzle)

N 0k W=

©

10
11
12
13
14
15
16

17
18

19

Input: a matrix A representing binary puzzle, filled with 1, 0, and 9
(blank)
B < solvepart1(4) ; /* Try to solve using forced move.
guess_list <[] ;
Nplank <number of blank in B;
guess_counter < 0 ;
history_of_changed_cell < {} ;
if B does not satisfy all the constraint then
L return A is invalid puzzle

while npanr # 0 do
B, history_of _changed_cell, guess_counter <+
solvepart2(B, history-of_changed_cell, guess_counter) ;
if B does not satisfy all the constraint then
guess_counter— = 1;
while guess_counter in guess_list do

remove guess_counter from guess_list ;

guess_counter— = 1;

if guess_counter = 0 then

L return A is invalid puzzle

revert back to condition at guess_counter ;
append(guess_counter) to guess_list

return B

*/

